›› 2012, Vol. 33 ›› Issue (5): 1497-1504.

• 数值分析 • 上一篇    下一篇

海底隧道涌水量数值计算的渗透系数确定方法

李术才1,赵 岩1, 2,徐帮树1,李利平1, 3,刘 钦1,王育奎1   

  1. 1.山东大学 岩土与结构工程研究中心,济南 250061;2.青岛市地下铁道公司,山东 青岛 266071; 3.中国矿业大学 深部岩土力学与地下工程国家重点实验室,徐州 江苏 221008
  • 收稿日期:2010-11-08 出版日期:2012-05-10 发布日期:2012-05-14
  • 通讯作者: 李利平,男,1981年生,博士,讲师,硕士生导师,主要从事地下工程地质灾害灾变机制与控制方面的研究工作。E-mail: yuliyangfan@163.com E-mail:lishucai@sdu.edu.cn
  • 作者简介:李术才,男,1965年生,博士,教授,博士生导师,主要从事裂隙岩体断裂损伤、地质灾害超前预报与防治等方面的教学与研究工作
  • 基金资助:

    国家自然科学基金国际合作与交流项目(No. 50820135907);国家自然科学基金青年科学基金(No. 50909056);中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金项目(No. SKLGDUEK1105)。

Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel

LI Shu-cai1, ZHAO Yan1, 2, XU Bang-shu1, LI Li-ping1, 3, LIU Qin1, WANG Yu-kui1   

  1. 1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China; 2. Qingdao Metro Corporation, Qingdao, Shandong 266071, China; 3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China
  • Received:2010-11-08 Online:2012-05-10 Published:2012-05-14

摘要: 海底隧道的建设往往伴随着高风险,而水害则是海底隧道建设期间风险最主要的来源之一,隧道涌水对施工安全与建成后的运营成本控制有着重要影响,因此,对海底隧道进行涌水量预测便显得尤为重要。数值计算方法是当前涌水量预测中应用最广的方法之一,而计算涌水量过程中最关键的问题之一是渗透系数的确定。以青岛胶州湾海底隧道工程为背景,通过数值计算、模型试验与现场监测数据分析等手段相结合的方法,对海底隧道建设期涌水量的预测进行了研究。首先进行海底隧道开挖后涌水量现场监测,得到开挖后涌水量变化曲线;再采用数值计算方法对围岩渗透系数的取值进行反分析,对渗透系数进行不断修正,并在数值计算中成功拟合实测涌水量曲线,所得到的渗透系数即为数值计算中应采用的合理渗透系数。在结合试验段地质情况的基础上将合理渗透系数与前期地勘压水试验得到的渗透系数进行比对,得到两者之间的关系。并通过模型试验的手段对以上结论进行验证。将其应用到海底隧道的涌水量预测中,通过正演数值计算预测围岩相似洞段的涌水量,其结果对海底隧道涌水量预测有一定的参考意义。

关键词: 海底隧道, 涌水量预测, 渗透系数

Abstract: The construction of subsea tunnel is high risky and water inrush is one of the main risk sources. If water inrush into the tunnel, it will have an important influence on the safety of construction as well as the control of operation cost after the subsea tunnel is completed. So making water inrush forecast is very important in the construction phase. Numerical analysis is the most popular method used in the prediction of water inrush at present, of which ascertaining the permeability coefficient is one key problem. Taking Qingdao Jiaozhouwan Subsea Tunnel as the project background, this paper deals with water inrush forecast during the subsea tunnel construction period by comprehensive usage of numerical computation, model test and local monitoring data analysis. Firstly, variation curves of the water inrush are got by monitoring the water inrush after tunnel excavation. Then numerical method is used to calculate the water inrush. During the process of calculating, parameters are adjusted constantly to fit the curve successfully. The permeability coefficient obtained is reasonable; it should be used in the numerical computation. Combined with the model geology, the relationship between the reasonable permeability coefficient and the permeability coefficient which is got from geological packer test in the early stage is obtained by comparison. Then model test is used to verify above conclusions. Finally, the conclusions can be used to other sections of subsea tunnel to make water inrush forecast. The result has significance for practice reference.

Key words: subsea tunnel, water inrush forecast, permeability coefficient

中图分类号: 

  • U 614
[1] 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444.
[2] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[3] 王刚, 韦林邑, 魏星, 张建民, . 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.
[4] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[5] 徐浩青, 周爱兆, 姜朋明, 刘顺青, 宋苗苗, 陈亮, . 不同砂−膨润土垂直防渗墙填筑土料的掺量研究[J]. 岩土力学, 2019, 40(S1): 424-430.
[6] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[7] 胡明鉴, 崔 翔, 王新志, 刘海峰, 杜 韦, . 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930.
[8] 李 贤, 汪时机, 何丙辉, 沈泰宇, . 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964.
[9] 范日东, 刘松玉, 杜延军, . 基于改进滤失试验的重金属污染 膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996.
[10] 余良贵, 周建, 温晓贵, 徐杰, 罗凌晖, . 利用HCA研究黏土渗透系数的标准探索[J]. 岩土力学, 2019, 40(6): 2293-2302.
[11] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[12] 张 昭, 程靖轩, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, . 基于土颗粒级配预测非饱和 渗透系数函数的物理方法[J]. 岩土力学, 2019, 40(2): 549-560.
[13] 刘一飞, 郑东生, 杨 兵, 祝 兵, 孙明祥. 粒径及级配特性对土体渗透系数影响的细观模拟[J]. 岩土力学, 2019, 40(1): 403-412.
[14] 朱长歧, 崔 翔, 胡明鉴, 王新志, 唐健健, . 钙质土电导率和渗透性的相关研究[J]. 岩土力学, 2018, 39(S2): 142-148.
[15] 马瑞男, 郭红仙, 程晓辉, 刘景儒, . 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(S2): 217-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[3] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[4] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[5] 谷拴成,苏培莉,王建文,王宏科. 烧变岩体特性及其注浆扩散行为研究[J]. , 2009, 30(S2): 60 -63 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .