›› 2012, Vol. 33 ›› Issue (8): 2513-2520.

• 数值分析 • 上一篇    下一篇

高心墙堆石坝心墙水力劈裂的颗粒流模拟

杨 艳1, 2,周 伟1,常晓林1,花俊杰1   

  1. 1. 武汉大学 水资源与水电工程科学国家重点实验室,武汉 430072;2. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100
  • 收稿日期:2011-03-28 出版日期:2012-08-10 发布日期:2012-08-13
  • 作者简介:杨艳,女,1983年生,博士研究生,讲师,主要从事高坝结构设计理论方面的研究工作
  • 基金资助:
    国家自然科学基金项目(No. 50979082)

Particle flow code simulation of hydraulic fracturing in high core wall rockfill dams

YANG Yan1, 2,ZHOU Wei1,CHANG Xiao-lin1,HUA Jun-jie1   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2011-03-28 Online:2012-08-10 Published:2012-08-13

摘要: 目前针对堆石或土石坝的心墙水力劈裂问题虽然已取得了不少成果,但现有的成果大多从宏观的角度进行研究,对心墙水力劈裂发生机制的认识尚未达成一致的观点。采用颗粒流方法从细观角度对心墙水力劈裂问题进行初步研究,模拟了心墙水力劈裂发生和发展的过程。计算结果表明,劈裂水压力Pf随着竖向应力的增大而增大,且两者基本呈线性关系,与室内成果的规律基本一致;心墙在高水力梯度作用下,形成的水楔效应降低了裂缝尖端区附近的最大主应力,当该值小于或接近心墙上游的外水压力时则会导致水力劈裂的发生。此外,计算结果还证明了心墙发生水力劈裂的主要力学原因是由于心墙中的张拉应力超过了土体的抗拉强度。

关键词: 堆石坝, 心墙, 水力劈裂, 颗粒流, 流固耦合

Abstract: Recently, increasing attention has been given to hydraulic fracturing phenomena in core wall of rockfill or soil dams. However, most of the studies are carried out from the macro prospective, and the fracturing mechanism is still disputable. In this paper, the hydraulic fracturing problem is analyzed using the particle flow code (PFC) from the micro prospective. The occurrence and development of hydraulic fracturing is simulated. Results show that the fracturing pressure Pf increases with the increasing of the vertical stress in an approximately linear way, which agrees well with experimental results. Under the high hydraulic gradient condition, the maximum principal stress near crack tip is decreased because of the wedge effect of water. Hydraulic fracturing will probably occur when the maximum principal stress is less than or close to the water pressure of upstream of core wall. In addition, it is also illustrated that the main reason of hydraulic fracturing in core wall is that the tension stress exceeds the tensile strength of the soil.

Key words: rockfill dam, core wall, hydraulic fracturing, particle flow, fluid-solid coupling

中图分类号: 

  • TV 313
[1] 左永振, 赵娜. 极端条件下心墙泥浆料的渗透反滤试验研究[J]. 岩土力学, 2020, 41(2): 520-526.
[2] 马春辉, 杨杰, 程琳, 李婷, 李雅琦, . 基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究[J]. 岩土力学, 2019, 40(6): 2397-2406.
[3] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
[4] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[5] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[6] 高 俊, 党发宁, 李海斌, 杨 超, 任 劼, . 沥青混凝土心墙简化解析受力分析模型[J]. 岩土力学, 2019, 40(3): 971-977.
[7] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[8] 张成功, 尹振宇, 吴则祥, 金银富, . 颗粒形状对粒状材料圆柱塌落影响的 三维离散元模拟 [J]. 岩土力学, 2019, 40(3): 1197-1203.
[9] 郑安兴, 罗先启, 陈振华, . 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学, 2019, 40(2): 799-808.
[10] 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906.
[11] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[12] 姚志华, 陈正汉, 方祥位, 黄雪峰, . 非饱和原状黄土弹塑性损伤流固耦 合模型及其初步应用 [J]. 岩土力学, 2019, 40(1): 216-226.
[13] 王桂林, 梁再勇, 张 亮, 孙 帆, . Z型裂隙对砂岩强度和破裂行为影响机制研究[J]. 岩土力学, 2018, 39(S2): 389-397.
[14] 盛云锋, 陈 远, 周 伟, 马 刚, 常晓林, . 基于改进动剪切模量模型的堆石坝动力响应分析[J]. 岩土力学, 2018, 39(S2): 405-414.
[15] 李 杨, 佘成学, 朱焕春, . 现场堆石体振动碾压的颗粒流模拟及验证[J]. 岩土力学, 2018, 39(S2): 432-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[2] 魏 纲,郭志威,魏新江,陈伟军. 软土隧道盾构出洞灾害的渗流应力耦合分析[J]. , 2010, 31(S1): 383 -387 .
[3] 刘俊岩,刘 燕,王海平. 考虑空间协同效应的排桩斜撑支护体系分段拆撑法研究[J]. , 2010, 31(9): 2854 -2860 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[6] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[7] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[8] 尹光志,王登科,张东明,魏作安. 基于内时理论的含瓦斯煤岩损伤本构模型研究[J]. , 2009, 30(4): 885 -889 .
[9] 侯公羽,牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. , 2009, 30(6): 1555 -1562 .
[10] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .