›› 2012, Vol. 33 ›› Issue (S2): 365-370.

• 数值分析 • 上一篇    下一篇

深部巷道围岩变形破坏机制分析

李 杰1,宋春明1,胡 啸2,陈文涛1,范鹏贤1   

  1. 1. 解放军理工大学 爆炸冲击防震防灾国家重点实验室,南京 210007;2. 空军工程环境质量站,北京 102208
  • 收稿日期:2012-08-27 出版日期:2012-11-22 发布日期:2012-12-11
  • 作者简介:李杰,男,1981年生,博士,主要从事防护工程和岩体力学方面的研究。
  • 基金资助:

    国家自然科学杰出青年基金资助(No. 50825403);国家重点基础研究发展计划(973计划)项目资助(No. 2010CB732003);国家自然科学创新研究群体科学基金资助(No. 51021001);水利部公益性行业科研专项项目资助(No. 201001009)

Analysis of deformation and failure mechanism of surrounding rock for deep underground projects

LI Jie1, SONG Chun-ming1, HU Xiao2, CHEN Wen-tao1, FAN Peng-xian1   

  1. 1. State Key Laboratory of Explosion&Impact and Disaster Prevention&Mitigation, PLA University of Science and Technology, Nanjing 210007, China; 2. Engineering Environment and Quality Supervision Station of Air Force, Beijing 102208, China
  • Received:2012-08-27 Online:2012-11-22 Published:2012-12-11

摘要: 采用弹脆性本构模型以及滑移破坏理论,对深部围岩应力分布以及变形破坏机制进行分析。计算结果表明,开挖卸荷将引起剪应力的增长,滑移剪切变形的发展将围岩划分成具有一定尺度的块体(或条带),它们之间的相互摩擦决定着残余强度的大小;在各向不均匀压缩的作用下,深部围岩能够产生区域拉伸破碎,使围岩开挖断面监测到的位移大大超出按连续介质理论计算得到的数值。采用考虑扩容的计算模型可以得到围岩产生区域拉伸破碎的条件,计算得到的该条件与岩体力学性质以及破碎尺度密切相关。

关键词: 深部围岩, 变形破坏机制, 支护, 区域拉伸破碎

Abstract: Brittle constitutive model and slippage destruction theory were used to analyze the stress distribution and failure mechanism of surrounding rock for deep underground project. The result shows that: Excavation unloading will cause the growth of the shear stress, which leading to the local irreversible (plastic) slip or break; and the surrounding rock will be divided into blocks with certain scale; the frictions between the blocks decide the value of the rest strength. Under the action of uneven compression, it can produce zonal tensile breakage, that made the monitored displacement greatly exceed the calculated value with continuum theory. By considering volume expansion, we can get the conditions that cause the tensile breakage; the calculation shows they are related to the material properties and the brocken scale.

Key words: deep surrounding rock, deformation and failure mechanism, support, zonal tensile breakage

中图分类号: 

  • TD62
[1] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[2] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[3] 申翃, 李晓, 雷美清, 徐文博, 余秀玲, . 剪力键支护体系的构想及模型试验研究[J]. 岩土力学, 2019, 40(7): 2574-2580.
[4] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[5] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[6] 刘泉声, 邓鹏海, 毕晨, 李伟伟, 刘军, . 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆 加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
[7] 胡帅伟, 陈士海, . 爆破振动下围岩支护锚杆动力响应解析解[J]. 岩土力学, 2019, 40(1): 281-287.
[8] 郭红仙, 周 鼎. 软土中基坑土钉支护稳定性问题探讨[J]. 岩土力学, 2018, 39(S2): 398-404.
[9] 郑进修,张建海,高克静. 地下厂房支护措施经验回归及支护强度判据[J]. , 2018, 39(S1): 303-310.
[10] 欧孝夺,全守岳,彭远胜,江 杰,吕 波,蒋 华,. 新型装配式基坑支护结构设计与试验[J]. , 2018, 39(9): 3433-3439.
[11] 周 勇,令永强,杨校辉, . 考虑附加应力作用的桩锚支护结构稳定性与位移关系研究[J]. , 2018, 39(8): 2913-2921.
[12] 程红战,陈 健,胡之锋,黄珏皓, . 考虑砂土抗剪强度空间变异性的盾构开挖面稳定性分析[J]. , 2018, 39(8): 3047-3054.
[13] 李连祥,符庆宏,黄佳佳, . 砂土地基和粉质黏土地基基坑悬臂开挖离心模型试验[J]. , 2018, 39(2): 529-536.
[14] 李 韬,徐奴文,戴 峰,李天斌,樊义林,李 彪,. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. , 2018, 39(2): 665-674.
[15] 杨忠民, 高永涛, 吴顺川, 周 喻, . 隧道大变形机制及处治关键技术模型试验研究[J]. 岩土力学, 2018, 39(12): 4482-4492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[2] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[3] 黄 阜,杨小礼. 考虑渗透力和原始Hoek-Brown屈服准则时圆形洞室解析解[J]. , 2010, 31(5): 1627 -1632 .
[4] 刘 杰,何 杰,闵长青. 楔形桩与圆柱形桩复合地基承载性状对比研究[J]. , 2010, 31(7): 2202 -2206 .
[5] 刘汉龙,陶学俊,张建伟,陈育民. 水平荷载作用下PCC桩复合地基工作性状[J]. , 2010, 31(9): 2716 -2722 .
[6] 王观石,李长洪,胡世丽,冯 春,李世海. 岩体中应力波幅值随时空衰减的关系[J]. , 2010, 31(11): 3487 -3492 .
[7] 王维铭,孙 锐,曹振中,袁晓铭. 国内外地震液化场地特征对比研究[J]. , 2010, 31(12): 3913 -3918 .
[8] 丁选明,陈育民,孔纲强. 基于径向不变假定的现浇大直径管桩纵向振动响应频域解[J]. , 2010, 31(S2): 109 -114 .
[9] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[10] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .