›› 2012, Vol. 33 ›› Issue (S2): 377-383.

• 数值分析 • 上一篇    下一篇

青藏铁路抛石护坡路基强迫对流特性数值分析

卞晓琳1,何 平1,吴青柏2,施烨辉1   

  1. 1. 清华大学 环境科学与工程系,北京 100084;2. 北京交通大学 土建学院隧道及地下工程教育部工程研究中心,北京 100044; 3. 中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室,兰州 730000
  • 收稿日期:2011-12-22 出版日期:2012-11-22 发布日期:2012-12-11
  • 作者简介:卞晓琳,女,1981年生,博士研究生,从事寒区岩土工程研究。
  • 基金资助:
    国家自然科学基金资助(No. 50778012)

Numerical analysis of forced convection characteristics of riprap slope embankment in Qinghai-Tibet railway

BIAN Xiao-lin1, HE Ping1, WU Qing-bai2, SHI Ye-hui1   

  1. 1. Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044,China; 3. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2011-12-22 Online:2012-11-22 Published:2012-12-11

摘要: 基于多孔介质中流体热对流的连续性方程、非达西流动量方程和能量方程,对强通风条件下青藏铁路典型抛石护坡路基内温度场和流速场的分布形态进行数值研究。研究结果表明,抛石护坡路基对多年冻土保护作用显著,抛石护坡路基的存在使夏季多年冻土上限明显提高,冬季抛石护坡路基下部土体回冻速度较天然地表下部土体更快,由于降温作用主要集中在护坡附近有限范围之内,对路基中部的降温作用相对较弱。整体而言,抛石护坡对冻土路基本体的保护作用有限,从长期降温效果来看,由于全球气候变暖的影响,强通风条件下抛石护坡路基中线以下土体的内部可能产生“似眼球状”融化夹层,不利于路基的稳定。迎风抛石护坡层中空气运动方向大致为沿护坡斜向上,背风抛石护坡层中空气运动方向以从下到上运动为主,抛石层内空气的运动形式为“绕流”,抛石层表面空气速度最大,内部较小,空气速度分布区间为1.24×10-3~12.8 m/s,数值结果与现场试验测得的风速区间基本一致。

关键词: 多年冻土, 抛石护坡路基, 强迫对流, 降温效应, 温度场, 流速场

Abstract: Based on the continuity, non-Darcy momentum and energy equations for fluid convection in porous media, the velocity and temperature fields of riprap slope embankments under strong ventilation condition were studied numerically in permafrost regions in the Qinghai-Tibet railway. The results show that the riprap slope embankments play a significant role in protecting the permafrost, under which the upper limit of permafrost increasing obviously in summer and the re-frozen process is much faster in winter compared to the permafrost under the native ground surface. The cooling effect of riprap slope embankment is limited mainly in the range of near slope embankment; so the centre of embankment can not be protected very well. With the climate warming, a thawing interlayer looks like an eyeball may be formed in the centre of permafrost under the riprap slope embankment, which is not conducive to the stability of slope embankment. The direction of air flow is from down to up along the slope in riprap slope at following wind side; but it is from up to down at counter wind side. The motion type of air flow in the riprap can be defined as roll flow; and the flow velocity is much larger at the surface of riprap than the inner. Besides, the distribution interval of velocity is between 1.24×10-3 m/s and 12.8 m/s; and the numerical result is mainly in accordance with the site test results.

Key words: permafrost, riprap slope embankment, forced convection, cooling effect, temperature field, flow velocity field

中图分类号: 

  • TU471.7
[1] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[2] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[3] 张明礼, 温 智, 董建华, 王得楷, 侯彦东, 王 斌, 郭宗云, 魏浩田, . 考虑降雨作用的气温升高对多年冻土 活动层水热影响机制[J]. 岩土力学, 2019, 40(5): 1983-1993.
[4] 高 樯,温 智,王大雁,牛富俊,谢艳丽,苟廷韬,. 基于冻融交界面直剪试验的冻土斜坡失稳过程研究[J]. , 2018, 39(8): 2814-2822.
[5] 张沛然,黄雪峰,杨校辉,刘自龙,朱中华,. 盐渍土水-热场耦合效应与盐胀变形试验[J]. , 2018, 39(5): 1619-1624.
[6] 张玉伟,谢永利,李又云,赖金星,. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. , 2018, 39(5): 1625-1632.
[7] 田亚护,胡康琼,邰博文,沈宇鹏,王腾飞,. 不同因素对排水沟渠水平冻胀力的影响[J]. , 2018, 39(2): 553-560.
[8] 任建喜,孙杰龙,张 琨,王 江,王东星. 富水砂层斜井冻结壁力学特性及温度场研究[J]. , 2017, 38(5): 1405-1412.
[9] 石荣剑,岳丰田,张 勇,陆 路, . 盾构地中对接冻结加固模型试验(Ⅰ) ——冻结过程中地层冻结温度场的分布特征[J]. , 2017, 38(2): 368-376.
[10] 张开健,孙 红,牛富俊,葛修润,. 多年冻土区缓倾角土层斜坡的地震反应[J]. , 2017, 38(12): 3469-3475.
[11] 舒 才,王宏图,施 峰,胡国忠,. 基于两能态吸附热理论的煤层瓦斯流动热-流-固多场耦合模型[J]. , 2017, 38(11): 3197-3204.
[12] 申艳军,杨更社,荣腾龙,刘 慧. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. , 2016, 37(S1): 521-529.
[13] 田宝柱 ,刘善军 ,张艳博 ,梁 鹏 ,刘祥鑫 , . 花岗岩巷道岩爆过程红外辐射时空演化特征室内模拟试验研究[J]. , 2016, 37(3): 711-718.
[14] 郭春香,吴亚平,蒋代军. 多年冻土区单桩竖向承载力在短期异常气候作用下的响应分析[J]. , 2015, 36(S2): 377-382.
[15] 宇德忠 ,程培峰 ,季 成 ,崔志刚,. 高纬度低海拔岛状多年冻土桩基回冻前后承载力的试验研究[J]. , 2015, 36(S2): 478-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[3] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[4] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[5] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[6] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[7] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .
[8] 吕亚茹 ,丁选明 ,孙 甲 ,孔纲强 . 刚性荷载下现浇X形桩复合地基极限承载力特性研究[J]. , 2012, 33(9): 2691 -2696 .
[9] 王洪新 ,孙玉永 . 考虑基坑开挖宽度的杆系有限元算法及试验研究[J]. , 2012, 33(9): 2781 -2787 .
[10] 刘飞禹 ,余 炜 ,蔡袁强 ,张孟喜 . 桩承式加筋地基室内试验及数值分析[J]. , 2012, 33(S1): 244 -250 .