›› 2013, Vol. 34 ›› Issue (6): 1668-1674.

• 基础理论与实验研究 • 上一篇    下一篇

非饱和花岗岩残积土崩解机制试验研究

张 抒,唐辉明   

  1. 中国地质大学(武汉) 工程学院,武汉 430074
  • 收稿日期:2012-04-13 出版日期:2013-06-10 发布日期:2013-06-14
  • 作者简介:张抒,女,1985年出生,博士研究生,主要从事岩土体工程稳定性的研究工作。
  • 基金资助:

    国家重点基础研究发展规划(973)项目(No. 2011CB710600)

Experimental study of disintegration mechanism for unsaturated granite residual soil

ZHANG Shu, TANG Hui-ming   

  1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2012-04-13 Online:2013-06-10 Published:2013-06-14

摘要: 为研究非饱和花岗岩残积土的崩解机制,将取自广州的残积土试样根据不同含水率和压实度进行制备,用自制仪器进行崩解性试验,并对相关公式进行修正并用于试验数据处理。同时,从微观角度将土颗粒的粒间受力状态进行简化分析,继而对非饱和花岗岩残积土的崩解机制进行分析,结果表明,主要控制因素为孔隙气压(有效孔隙率)和基质吸力。结合试验结果,建立崩解稳定阶段平均速度与有效空洞率及基质吸力的关系,结果表明,分别呈指数函数和对数函数正相关。

关键词: 非饱和花岗岩残积土, 崩解, 基质吸力, 有效孔隙率

Abstract: In order to study the disintegration mechanism of unsaturated granite residual soil, a serious of samples with different moisture contents and compaction degrees are made from granite residual soils from Guangzhou, south of China. Homemade apparatus is used for test, and meliorated method and computation formula were utilized for analysis. This meliorated method considered gas evolution during immersing into water so as to reduce the avoidable errors. Meanwhile, simplified model of particles with low degree of saturation is analyzed from the microscopic perspective. The disintegration mechanism of unsaturated granite residual soil is analyzed. The main controlling factors had been regarded as effective void ratio and matric suction. Relationship between above two control factors and disintegrating velocity has been established on the basis of effective void ratio analysis and estimation of soil water characteristic curve (SWCC). The results reveal that it shows exponential function and logarithm function relationships respectively.

Key words: unsaturated granite residual soil, disintegration, matric suction, effective void ratio

中图分类号: 

  • TU 411.2
[1] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[2] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[3] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[4] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[5] 包小华, 廖志广, 徐长节, 庞小朝, 谢雄耀, 崔宏志, . 不同渗流边界条件下粉砂边坡失稳模型试验研究[J]. 岩土力学, 2019, 40(10): 3789-3796.
[6] 李国维, 施赛杰, 侯宇宙, 吴建涛, 李 峰, 吴少甫, . 引江济淮试验工程非膨胀土开发技术实验研究[J]. 岩土力学, 2018, 39(S2): 302-314.
[7] 陶高梁,柏 亮,袁 波,甘世朝. 土-水特征曲线与核磁共振曲线的关系[J]. , 2018, 39(3): 943-948.
[8] 钱劲松,李嘉洋,周 定,凌建明. 考虑吸力效应的非饱和黏土回弹模量预估模型[J]. , 2018, 39(1): 123-128.
[9] 曾志雄,孔令伟,田 海,李聚昭. 膨胀岩崩解特性的干湿循环效应与粒度熵表征[J]. , 2017, 38(7): 1983-1989.
[10] 申培武,唐辉明,汪丁建,何 成,张雅慧. 巴东组紫红色泥岩干湿循环崩解特征试验研究[J]. , 2017, 38(7): 1990-1998.
[11] 方瑾瑾,邵生俊,冯以鑫,. 真三轴条件下Q3原状黄土的吸力变化特性研究[J]. , 2017, 38(4): 934-942.
[12] 吴珺华,杨 松,. 干湿循环下膨胀土基质吸力测定及其对抗剪强度影响试验研究[J]. , 2017, 38(3): 678-684.
[13] 杨校辉,朱彦鹏,郭 楠,师占宾,冉国良, . 压实度和基质吸力对土石混合填料强度变形特性的影响研究[J]. , 2017, 38(11): 3205-3214.
[14] 潘 艺,刘 镇,周翠英, . 红层软岩遇水崩解特性试验及其界面模型[J]. , 2017, 38(11): 3231-3239.
[15] 李 芃,谭晓慧,辛志宇,王 雪,谢 妍,. 确定渗析平衡时间的数值模拟方法[J]. , 2017, 38(11): 3363-3370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[3] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[4] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[5] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[6] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[7] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .
[8] 章定文,刘松玉,顾沉颖. 各向异性初始应力状态下圆柱孔扩张理论弹塑性分析[J]. , 2009, 30(6): 1631 -1634 .
[9] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .
[10] 谭峰屹,邹志悝,邹荣华,林祖锴,郑德高. 换填黏性土料工程特性试验研究[J]. , 2009, 30(S2): 154 -157 .