›› 2008, Vol. 29 ›› Issue (6): 1711-1715.

• 基础理论与实验研究 • 上一篇    下一篇

侧移土体被动桩成拱效应分析

李忠诚1,2,洪昌地2   

  1. 1. 上海现代建筑设计集团申元岩土工程有限公司,上海 200011;2. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2006-07-05 出版日期:2008-06-10 发布日期:2013-07-15
  • 作者简介:李忠诚,男,1977年生,博士,主要从事桩基础理论研究和岩土工程数值分析
  • 基金资助:

    上海市科委重点基础研究项目资助(No. 02DJ14062);高等学校博士学科点专项科研基金资助(No. 20020247003)

Soil arching action in passive piles under lateral displaced soil

LI Zhong-cheng1,2, HONG Chang-di2   

  1. 1. Shen-Yuan Geotechnical Engineering Co., Ltd., Shanghai 200011, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2006-07-05 Online:2008-06-10 Published:2013-07-15

摘要: 在分析某工业厂房坍塌原因的基础上,认为由于侧移土体被动桩的成拱效应,地面超载引起的土压力被传递到桩身上,导致桩身发生了较大的侧向变形是这起事故发生的主要原因,事故的发生证明了侧移土体被动桩成拱效应的存在。在此基础上,建立了三维数值模型,对土拱效应的形成过程进行了模拟。对三维情况下被动桩的成拱效应与相同条件二维情况的形式和变化规律进行了比较,对不同桩间距、不同堆载大小情况下的被动桩成拱效应进行了分析,并对成拱效应随时间的变化规律进行了探讨。

关键词: 被动桩, 土拱效应, 数值分析, 侧向变形

Abstract: Based on researching the collapse cause of an industrial building, it is concluded that the main cause is pile foundation’s lateral displacement induced by soil pressure, which is transferred to pile body due to soil arching action between piles. The accident proves that the soil arching action indeed exists between piles. Furthermore, three-dimensional numerical model is established to explore soil arching action of passive piles; the comparison is made for the differences of soil arching action between three dimension and two dimension; the rule is drawn for soil arching action of passive pile under different pile spaces and different loads; and the variation rule of soil arching action with time is explored.

Key words: passive pile, soil arching action, numerical analysis, lateral displacement

中图分类号: 

  • TU 472
[1] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[2] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[3] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[4] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[5] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[6] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[7] 尹志强,佘成学,姚海林,卢 正,骆行文,. 考虑土拱效应的黏性填土排桩桩后土压力研究[J]. , 2018, 39(S1): 131-139.
[8] 赖丰文,陈福全,万梁龙,. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. , 2018, 39(7): 2546-2554.
[9] 徐长节,梁禄钜,陈其志,刘元昆,. 考虑松动区内应力分布形式的松动土压力研究[J]. , 2018, 39(6): 1927-1934.
[10] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[11] 阿比尔的,郑颖人,冯夏庭,丛 宇,. 平行黏结模型宏细观力学参数相关性研究[J]. , 2018, 39(4): 1289-1301.
[12] 刘光秀, 李玉根, 曹艳妮, . 路堤荷载下地基的侧向变形计算分析[J]. 岩土力学, 2018, 39(12): 4517-4526.
[13] 郭浩然,乔 兰,李 远. 能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J]. , 2018, 39(11): 4042-4052.
[14] 李一凡,董世明,潘 鑫,李念斌,原 野. 砂岩的I/III复合型断裂试验研究[J]. , 2018, 39(11): 4063-4070.
[15] 郭 洋,李 清,徐文龙,钱 路,田 策. 条形药包爆破预制贯通裂纹动态断裂过程研究[J]. , 2018, 39(10): 3882-3890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 王义重,李勇泉,傅旭东. 求水山隧道下穿机荷高速段新奥法施工有限元计算[J]. , 2011, 32(1): 125 -131 .
[5] 孔祥兴,夏才初,仇玉良,张丽英,龚建伍. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. , 2011, 32(2): 516 -524 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 谭忠盛 ,李 健 ,卓 越 ,张 鹏 . 无纺布对海底隧道衬砌防水作用的试验研究[J]. , 2012, 33(7): 1927 -1932 .
[8] 魏 纲 ,洪 杰 ,魏新江 . 双圆盾构隧道施工对平行既有隧道的影响分析[J]. , 2012, 33(S2): 98 -104 .
[9] 刘红岩 ,黄妤诗 ,李楷兵 ,张吉宏 . 预制节理岩体试件强度及破坏模式的试验研究[J]. , 2013, 34(5): 1235 -1241 .
[10] 贾彦杰,蒋 平,童 华. 基于Drucker-Prager准则的扩孔器单齿正交切削岩土三维力学模型[J]. , 2013, 34(5): 1429 -1436 .