›› 2008, Vol. 29 ›› Issue (3): 639-644.

• 基础理论与实验研究 • 上一篇    下一篇

某抽水蓄能电站输水系统下平段区围岩渗透薄弱部位探测

宋汉周1,王建平1,周名权2,周祖权2   

  1. 1.河海大学 地球科学与工程系,南京 210098;2.天荒坪抽水蓄能有限责任公司,浙江 安吉 313302
  • 收稿日期:2006-06-08 出版日期:2008-03-10 发布日期:2013-07-19
  • 作者简介:宋汉周,1954年生,硕士研究生(英国),教授,从事地质工程领域的教学与科研工作。
  • 基金资助:

    华东电网有限公司科技项目的部分研究成果(No. T0501)

Surveying of weakness areas of anti-seepage within surrounding rock masses of water- diversion system of a pumped storage power plant

SONG Han-zhou1, WANG Jian-ping1, ZHOU Ming-quan2, ZHOU Zu-quan2   

  1. 1. Dept. of Earth Science & Engineering, Hohai University, Nanjing 210098, China; 2.Tianhuangping Pumped Storage Power Co. Ltd., Zhejiang 313302, China
  • Received:2006-06-08 Online:2008-03-10 Published:2013-07-19

摘要: 对于地下工程围岩渗透薄弱部位的探测是一项具有隐蔽性和复杂性的地质工程。为避免或减少采用单一探测方法可能出现的不确定性,以一抽水蓄能电站为例,并行采用了4种方法对研究区进行了探测:(1)放射性法;(2)高密度电法;(3)天然示踪法;(4)水质分析法。就其原理而言,前2种方法属于应用地球物理范畴,而后2种方法则属于应用地球化学范畴。根据探测成果,认为区内岩体渗透薄弱部位是存在的,而以 射线强度负异常、低电阻、渗漏水点水温及其他水质指标含量比较接近其补给源作为标志。就其形成机制而言,为多场耦合作用的产物;其中,水动力作用、水化学作用及其耦合作用为最活跃的因素。

关键词: 抽水蓄能电站, 输水系统, 围岩, 多手段探测, 渗透, 薄弱部位, 机制

Abstract: It is a kind of complicated geo-engineering surveying the weakness area of anti-seepage within surrounding rock masses of water-diversion system of a pumped storage power plant. In order to avoid the uncertainty involved only by one method, four methods, i.e. ?-ray radioactive determination, resistivity exploration, natural tracer and water quality analyzing method, were used in this case study. Essentially, the former two methods are based on geophysics, while the latter two ones are on geochemistry. According to the results, it is believed that some weakness areas of anti-seepage indeed exist within the domain. They were remarked with negative abnormal ?-ray density, lower resistivity, water chemistry mostly in coincidence with one as its recharge source, and others. As to the formation, it is resultant from the coupled action of multi-fields, in which hydro-dynamic and geochemical action are mostly active.

Key words: pumped storage power plant, water-diversion system, surveying with multi-methods, seepage, weakness, mechanism

中图分类号: 

  • TU 457
[1] 杨德欢, 颜荣涛, 韦昌富, 潘雪瑛, 张芹, . 饱和黏土平均粒间应力的确定方法[J]. 岩土力学, 2019, 40(6): 2075-2084.
[2] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[3] 王辰霖, 张小东, 杜志刚, . 循环加卸载作用下预制裂隙煤样渗透性试验研究[J]. 岩土力学, 2019, 40(6): 2140-2153.
[4] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[5] 余良贵, 周建, 温晓贵, 徐杰, 罗凌晖, . 利用HCA研究黏土渗透系数的标准探索[J]. 岩土力学, 2019, 40(6): 2293-2302.
[6] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[7] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
[8] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[9] 刘孟适, 罗 强, 蒋良潍, 陆清元, 梁多伟, . 粗粒土渗透试验边壁孔隙特征及 处理层最优厚度研究[J]. 岩土力学, 2019, 40(5): 1787-1796.
[10] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[11] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[12] 徐 强, 肖 明, 陈俊涛, 倪少虎, . 渗流监测数据缺失处理与渗透稳定判断[J]. 岩土力学, 2019, 40(4): 1526-1534.
[13] 吴梦喜, 高桂云, 杨家修, 湛正刚, . 砂砾石土的管涌临界渗透坡降预测方法[J]. 岩土力学, 2019, 40(3): 861-870.
[14] 魏久传, 韩承豪, 张伟杰, 谢 超, 张连震, 李孝朋, 张春瑞, 蒋记港, . 基于步进式算法的裂隙注浆扩散机制研究[J]. 岩土力学, 2019, 40(3): 913-925.
[15] 谌文武, 张起勇, 刘宏伟, . SH固土剂在遗址土中的渗透注浆扩散规律[J]. 岩土力学, 2019, 40(2): 429-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[2] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[3] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[4] 尚守平,岁小溪,周志锦,刘方成,熊 伟. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. , 2010, 31(2): 377 -381 .
[5] 中国生,熊正明. 基于小波包能量谱的建(构)筑物爆破地震安全评估[J]. , 2010, 31(5): 1522 -1528 .
[6] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[7] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .
[8] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .
[9] 胡再强,李宏儒,苏永江. 岗曲河混凝土面板堆石坝三维静力应力变形分析[J]. , 2009, 30(S2): 312 -0317 .
[10] 丁选明,刘汉龙. 均质土中PCC桩与实心桩动力响应对比分析[J]. , 2011, 32(S1): 260 -264 .