›› 2008, Vol. 29 ›› Issue (3): 685-690.

• 基础理论与实验研究 • 上一篇    下一篇

横观各向同性饱和地基竖向振动的衰减特性

王小岗1, 2   

  1. 1.台州学院 建筑工程系,浙江 台州 318000;2.浙江大学 建筑工程学院,杭州 310027
  • 收稿日期:2006-06-16 出版日期:2008-03-10 发布日期:2013-07-19
  • 作者简介:王小岗,1967年生,男,教授,工学博士,博士后,从事土动力学及动力相互作用研究
  • 基金资助:

    国家自然科学基金资助项目(No. 50678108);浙江省自然科学基金资助项目(No. Y106264)

Vibration attenuation of transversely isotropic saturated strata under vertical surface loads

WANG Xiao-gang1, 2   

  1. 1. Department of Civil Engineering and Architecture, Taizhou University, Linhai 317000, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
  • Received:2006-06-16 Online:2008-03-10 Published:2013-07-19

摘要: 基于提出的横观各向同性饱和多孔介质Biot波动方程的一般解,研究了饱和半空间地基在竖向点源简谐激振荷载作用下地表振动的衰减特征,分析了激振频率以及横观各向同性饱和土介质的各向异性参数和孔隙渗透系数对地表振动特征的影响。计算结果表明,低频和高频激振时,地表位移衰减特性存在明显差异;在饱和土的各向异性参数中,纵向和水平方向动态渗透系数比值和刚度系数比值对地表位移衰减影响最大,这也说明采用各向同性饱和介质的动力学模型不能准确地描述具有明显各向异性特性的饱和土地基的动力特性。

关键词: 横观各向同性, 饱和土, Biot波动方程, 简谐振动

Abstract: Based on the general solutions of Biot’s wave motions of transversely isotropic saturated poroelastic media established by the author,the vibration attenuation at ground surface under the point harmonic excitation is researched. And the combined effects of the soil permeability and the loading frequency on the results are analyzed. The calculation results indicate that the characteristics of vibration attenuation of vertical displacement under the low and the high exciting frequencies are different obviously. Of all the parameters of transversely isotropic saturated media, the rates both in osmotic coefficient and in elastic constants between vertical and horizontal direction influence the vertical vibration attenuation mostly. The results also indicate that adopting dynamic model of isotropic saturated medium could not describe exactly the dynamic characters of the saturated poroelastic medium that has obviously anisotropic properties.

Key words: transversely isotropic, saturated soils, Biot’s wave equations, harmonic vibration

中图分类号: 

  • TU 435
[1] 周凤玺, 高国耀, . 非饱和土中热−湿−盐耦合作用的稳态分析[J]. 岩土力学, 2019, 40(6): 2050-2058.
[2] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[3] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[4] 丁伯阳, 宋宥整. 饱和土地下源u-P形式解答动力响应计算[J]. 岩土力学, 2019, 40(2): 474-480.
[5] 方瑾瑾, 冯以鑫, 赵伟龙, 王立平, 余永强, . 真三轴条件下原状黄土的非线性本构模型[J]. 岩土力学, 2019, 40(2): 517-528.
[6] 陈正汉, 郭 楠、. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.
[7] 巴振宁, 周 旭, 梁建文, . 横观各向同性凸起地形对平面qP-qSV波的散射[J]. 岩土力学, 2019, 40(1): 379-387.
[8] 王少杰,吕爱钟,张晓莉. 横观各向同性岩体中马蹄形隧洞的位移反分析方法[J]. , 2018, 39(S1): 495-504.
[9] 段晓梦,曾立峰, . 非饱和土的承载结构与岩土广义结构性[J]. , 2018, 39(9): 3103-3112.
[10] 李 宣, 孙德安,张俊然,. 吸力历史对非饱和粉土动力变形特性的影响[J]. , 2018, 39(8): 2829-2836.
[11] 宋 佳,杜修力,许成顺,孙宝印,. 饱和土场地-桩基-地上结构体系的地震响应研究[J]. , 2018, 39(8): 3061-3070.
[12] 徐 筱,赵成刚,蔡国庆,. 区分毛细和吸附作用的非饱和土抗剪强度模型[J]. , 2018, 39(6): 2059-2064.
[13] 陆建飞,周慧明,刘 洋. 横观各向同性层状饱和土动力问题的反射、透射矩阵方法[J]. , 2018, 39(6): 2219-2226.
[14] 韩泽军,林 皋,周小文,杨林青. 横观各向同性层状地基动应力响应的求解与分析[J]. , 2018, 39(6): 2287-2294.
[15] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[2] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[3] 尚守平,岁小溪,周志锦,刘方成,熊 伟. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. , 2010, 31(2): 377 -381 .
[4] 李 峰,王晓睿,罗晓辉,郭院成. 基坑坑底稳定性的机会约束评估方法[J]. , 2010, 31(12): 3867 -3874 .
[5] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[6] 苏国韶,张克实,吕海波. 位移反分析的粒子群优化-高斯过程协同优化方法[J]. , 2011, 32(2): 510 -515 .
[7] 高文华,朱建群,张志敏,黄自永. 基于Hoek-Brown非线性破坏准则的软岩地基极限承载力数值模拟[J]. , 2011, 32(2): 593 -598 .
[8] 丁选明,刘汉龙. 均质土中PCC桩与实心桩动力响应对比分析[J]. , 2011, 32(S1): 260 -264 .
[9] 张桂荣 ,程 伟. 降雨及库水位联合作用下秭归八字门滑坡稳定性预测[J]. , 2011, 32(S1): 476 -0482 .
[10] 舒志乐 ,刘新荣 ,朱成红 ,郭子红 ,李晓红. 隧道衬砌空洞探地雷达三维探测模型试验研究[J]. , 2011, 32(S1): 551 -0558 .