›› 2008, Vol. 29 ›› Issue (3): 701-706.

• 基础理论与实验研究 • 上一篇    下一篇

大规模超长群桩基础工作性能的数值模拟

王俊杰1, 2,朱俊高3,吴寿昌4   

  1. 1.重庆交通大学 结构工程重点实验室,重庆 400074;2.重庆交通大学 河海学院,重庆 400074; 3.河海大学 岩土工程科学研究所,南京 210098;4.苏通长江公路大桥建设指挥部,江苏 南通 226009
  • 收稿日期:2007-04-16 出版日期:2008-03-10 发布日期:2013-07-19
  • 作者简介:王俊杰,男,1973年生,博士,副教授,从事地质工程和岩土工程方面的教学与研究工作
  • 基金资助:

    重庆交通大学结构工程重庆市重点实验室暨桥梁结构工程交通行业重点实验室开放基金项目(No. CQSLBF-Y07-5)。

Numerical simulation on behavior of large-scale overlength pile group foundation

WANG Jun-jie1, 2, ZHU Jun-gao3, WU Shou-chang4   

  1. 1. Key Laboratory of Structure Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. College of River & Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 4. Su-Tong Bridge Construction Headquarters, Nantong 226009, China
  • Received:2007-04-16 Online:2008-03-10 Published:2013-07-19

摘要: 超长桩基础在土木工程中的应用越来越多,但对其工作性状的研究相对滞后。以某超长群桩基础工程为例,用三维非线性有限元方法分析了超长单桩及群桩的工作性能。计算中桩、土和承台的有限元模型均用8节点六面体等参单元,桩-土界面用有厚度的接触面单元模拟;混凝土的应力-应变关系用线弹性模型,土体用非线性Duncan-Chang弹性模型模拟;承台施工过程用分级加荷的方法模拟,承台混凝土的硬化过程用变化模量的方法模拟。计算结果表明,超长单桩的承载性状属摩擦桩,其桩身失稳的原因是桩侧土体的破坏;在群桩基础中,不同位置基桩的工作性能不完全相同,承台周边桩的工作性能与单桩类似,而与内部桩的差别较大;现行规范中推荐的群桩效应系数和有限元计算结果间存在较大差别,表明现行规范可能不适用于超长群桩基础,对超长群桩基础的工作性能进行深入研究是必要的。

关键词: 超长群桩基础, 有限元, 非线性问题, 工作性状, 群桩效应

Abstract: Overlength pile foundation is successfully used in more and more civil engineering, but the study on its behaviour is still very little. Based on an example of a large-scale overlength pile group foundation engineering, the behaviours of overlength single pile and pile group foundation are investigated using nonlinear three-dimensional finite element method (3D FEM). A hexahedron isoparametric element with 8 nodes is employed in the finite element model of pile, foundation slab and soil. A special thin element with a very little thickness is used to simulate possible nonlinear deformations between soil and pile. Linear elastic-model and nonlinear Duncan-Chang elastic model are used to simulate the constitutive relation of concrete of pile and foundation slab, and soil mass respectively. The course of building foundation slab is simulated by adding elements in calculating, and that of hardening concrete of foundation slab is simulated using the method of increasing its modulus. Calculating results indicate that the behaviour of overlength single pile is frictional, and its failure is the result from the failure of soil around pile firstly. In group pile foundation, many clear differences in behaviours of piles can be found among the piles located in different positions under the foundation slab, especially between the piles near the edge of foundation and ones in the centre of the foundation. The behaviour of side pile near the edge of foundation slab is almost same with that of single pile, but apparent difference from that of centre pile. Reduction factor of pile group can be obtained from both current technical code for building pile foundation and calculating results of 3D FEM. The large difference in the reduction factors of pile group from the two methods indicates that it is necessary to investigate further the behaviour of overlength pile group foundation, because the current technical code isn’t enough for the designation and construction of overlength pile group foundation, especially for larger-scale overlength pile group foundation.

Key words: overlength pile group foundation, finite element method, nonlinear problem, behaviour, action of group piles

中图分类号: 

  • TU 473
[1] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[2] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[3] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[4] 梅慧浩, 冷伍明, 聂如松, 刘文劼, 伍晓伟, . 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学, 2019, 40(4): 1603-1613.
[5] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
[6] 郑安兴, 罗先启, 陈振华, . 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学, 2019, 40(2): 799-808.
[7] 王之东, 黎立云, 陈 滔, 刘兵权, . 矿柱岩爆模型试验中能量释放研究[J]. 岩土力学, 2018, 39(S2): 177-185.
[8] 王忠瑾, 方鹏飞, 谢新宇, 王奎华, 王文军, 李金柱, . 带肋竹节桩竖向抗压承载力影响因素分析[J]. 岩土力学, 2018, 39(S2): 381-388.
[9] 周雄雄, 迟世春, 贾宇峰, 谢芸菲, . 高土石坝填筑过程的精细化模拟方法[J]. 岩土力学, 2018, 39(S2): 443-450.
[10] 魏匡民,陈生水,李国英,吴俊杰, . 陡峻河谷高面板坝坝体与坝基接触效应[J]. , 2018, 39(9): 3415-3424.
[11] 李志远,李建波,林 皋,韩泽军,. 基于子结构法的成层场地中沉积河谷的散射分析[J]. , 2018, 39(9): 3453-3460.
[12] 郑安兴,罗先启,. 危岩水力劈裂分析的扩展有限元法[J]. , 2018, 39(9): 3461-3468.
[13] 宋 佳,古 泉,许成顺,杜修力,. 饱和土动力方程全显式有限元法在 OpenSees中的实现与应用[J]. , 2018, 39(9): 3477-3485.
[14] 宋 佳,杜修力,许成顺,孙宝印,. 饱和土场地-桩基-地上结构体系的地震响应研究[J]. , 2018, 39(8): 3061-3070.
[15] 韩 冰,梁建文,朱 俊,. 深厚饱和软土场地中透镜体对上部结构地震响应的影响[J]. , 2018, 39(6): 2227-2236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[2] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[3] 张 霆,刘汉龙,胡玉霞,STEWART Doug. 鼓式土工离心机技术及其工程应用研究[J]. , 2009, 30(4): 1191 -1196 .
[4] 苏国韶,张克实,吕海波. 位移反分析的粒子群优化-高斯过程协同优化方法[J]. , 2011, 32(2): 510 -515 .
[5] 高文华,朱建群,张志敏,黄自永. 基于Hoek-Brown非线性破坏准则的软岩地基极限承载力数值模拟[J]. , 2011, 32(2): 593 -598 .
[6] 谭峰屹,邹志悝,邹荣华,林祖锴,郑德高. 换填黏性土料工程特性试验研究[J]. , 2009, 30(S2): 154 -157 .
[7] 钱岳红 ,李 杰 ,陈文涛 ,李文培. 考虑卸荷时间的深埋巷道附近破坏特性研究[J]. , 2011, 32(5): 1347 -1352 .
[8] 周 蜜 ,王建国 ,黄松波 ,豆 朋 ,张丽镪 ,姚 伟. 土壤电阻率测量影响因素的试验研究[J]. , 2011, 32(11): 3269 -3275 .
[9] 李春光,朱宇飞,刘 丰,邓 琴,郑 宏. 基于下限原理有限元的强度折减法[J]. , 2012, 33(6): 1816 -1821 .
[10] 陈福江,马建林,朱 林,乐大维. 考虑压缩模量深度效应的深厚软土桩基沉降计算[J]. , 2012, 33(S2): 167 -172 .