›› 2013, Vol. 34 ›› Issue (9): 2667-2671.

• 岩土工程研究 • 上一篇    下一篇

青藏铁路多年冻土区路基变形特征及其来源

孙志忠1,2,马 巍1,党海明3,贠汉伯1,2,武贵龙1,2   

  1. 1. 中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室,兰州 730000;2. 中国科学院寒区旱区环境与工程研究所 青藏高原北麓河冻土工程与环境综合观测研究站,青海 格尔木 816000;3. 青藏铁路公司 格尔木工务段,青海 格尔木 816000
  • 收稿日期:2012-06-28 出版日期:2013-09-11 发布日期:2013-09-13
  • 作者简介:孙志忠,男,1974年生,博士研究生,副研究员,主要从事寒区工程与环境方面的研究工作
  • 基金资助:

    国家重点基础研究发展计划(973项目)(No. 2012CB026106);国家自然科学重点基金项目(No. 41030741);冻土工程国家重点实验室自主课题(No. SKLFSE-ZQ-17)。

Characteristics and causes of embankment deformation for Qinghai-Tibet Railway in permafrost regions

SUN Zhi-zhong1,2,MA Wei1,DANG Hai-ming3,YUN Han-bo1,2,WU Gui-long1,2   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2. Beiluhe Observation and Research Station on Frozen Soil Engineering and Environment in Qinghai-Tibet Plateau, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Golmud, Qinghai 816000, China; 3.Golmud Public Works Section, Qinghai-Tibet Railway Corporation, Golmud, Qinghai 816000, China
  • Received:2012-06-28 Online:2013-09-11 Published:2013-09-13

摘要: 基于青藏铁路多年冻土区34个路基监测断面2005-2011年的变形与地温资料,分析路基的变形特征及其来源。监测结果表明:①监测期累计变形量大于100 mm的断面均为普通路基,其变形主要来自路基下部因冻土上限下降而引起的高含冰量冻土的融沉变形以及融土的压密变形,其次为路基下部多年冻土因地温升高而产生的高温冻土的压缩变形。②监测期累计变形量小于100 mm的普通路基与块石结构路基断面,其变形主要来自路基下部多年冻土的压缩变形。③总体而言,块石结构路基变形量明显小于普通路基,从而验证了主动冷却措施的长期有效性。其研究结果可为冻土区路基稳定性判断及病害预警提供数据支持。

关键词: 青藏铁路, 多年冻土, 路基变形, 沉降

Abstract: In order to study the stability of embankment of the Qinghai-Tibet Railway after its operation, long-term monitoring system for the railway in permafrost regions was built in 2005. Monitoring content mainly includes ground temperature and deformation of the embankment. Ground temperature was monitored automatically with data collecting instrument; and deformation was obtained manually. Based on in-situ monitoring data of deformation and ground temperature from 34 embankment sections of Qinghai-Tibet Railway in permafrost regions during the year of 2005-2011, the characteristics and causes of deformation are analyzed. The results indicate that the accumulative deformation for a part of common embankments is more than 100 mm, respectively, which mainly comes from thaw settlement of permafrost with high-ice content and consolidation settlement of thawed soil because of the decline of permafrost table, as well as the compression deformation of warm permafrost due to rise of ground temperature under the embankment. For another part of common embankments and the crushed rocks embankments, owing to the compression deformation of permafrost under the embankment their total deformations are less than 100 mm, respectively. In general, the settlement deformation amount of crushed rocks embankments is remarkably less than that of common embankments, which confirms long-term effectiveness of the active cooling measure.

Key words: Qinghai-Tibet Railway, permafrost, embankment deformation, settlement

中图分类号: 

  • TU 445
[1] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[2] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[3] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 卢谅, 石通辉, 杨东, . 置换减载与加筋复合处理方法对路基不 均匀沉降控制效果研究[J]. 岩土力学, 2019, 40(9): 3474-3482.
[6] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[7] 杜文, 王永红, 李利, 朱连臣, 朱浩天, 王有旗, . 双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.
[8] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[9] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[10] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[11] 张明礼, 温 智, 董建华, 王得楷, 侯彦东, 王 斌, 郭宗云, 魏浩田, . 考虑降雨作用的气温升高对多年冻土 活动层水热影响机制[J]. 岩土力学, 2019, 40(5): 1983-1993.
[12] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
[13] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[14] 刘成禹, 张 翔, 程 凯, 陈博文, . 地下工程涌水涌砂诱发的沉降试验研究[J]. 岩土力学, 2019, 40(3): 843-851.
[15] 谭国宏, 肖海珠, 杜 勋, 胡文军. 大跨度公铁合建斜拉桥主塔沉井基础沉降变形分析[J]. 岩土力学, 2019, 40(3): 1113-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[2] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[3] 郝冬雪,陈 榕,栾茂田,武科. SBPT测定饱和黏土不排水强度的数值分析[J]. , 2010, 31(7): 2324 -2328 .
[4] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[5] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[6] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .
[7] 王洪新 ,孙玉永 . 考虑基坑开挖宽度的杆系有限元算法及试验研究[J]. , 2012, 33(9): 2781 -2787 .
[8] 刘飞禹 ,余 炜 ,蔡袁强 ,张孟喜 . 桩承式加筋地基室内试验及数值分析[J]. , 2012, 33(S1): 244 -250 .
[9] 陈志坚 ,陈欣迪 ,唐 勇 ,张宁宁 . 超大型深水群桩基础的传感器保护技术[J]. , 2012, 33(11): 3509 -3515 .
[10] 雍 睿,唐辉明,胡新丽,李长冬,黄 磊. 结构面抗剪强度参数线性拟合方法适用性研究[J]. , 2012, 33(S2): 118 -124 .