›› 2007, Vol. 28 ›› Issue (11): 2461-2464.

• 基础理论与实验研究 • 上一篇    下一篇

土钉支护结构优化设计的有限元分析

高 盟1, 2,高广运1, 2,张远芳3   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 新疆农业大学 水利与土木工程学院,新疆 乌鲁木齐 830052
  • 收稿日期:2005-11-08 出版日期:2007-11-10 发布日期:2013-10-18
  • 作者简介:高盟,男,1974年生,博士研究生,主要从事土动力学和环境土工学方面的研究
  • 基金资助:

    上海市重点学科(岩土工程)建设项目资助

Three-dimensional finite element analysis of structure optimal design in soil nailing

GAO Meng1, 2, GAO Guang-yun1, 2, ZHANG Yuan-fang3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. College of Hydraulic and Civil Engineering, Xinjiang Agriculture University, Urumqi 830052, China
  • Received:2005-11-08 Online:2007-11-10 Published:2013-10-18

摘要: 考虑土钉-土体的相互作用,建立三维有限元模型,分析计算土钉支护结构的内力和位移,提出了变形控制和应力控制相结合的优化设计方法。采用遗传算法,以应力和位移为约束条件,以工程造价为目标函数,建立了土钉支护结构的优化设计数学模型,并编制了相应的计算程序,通过算例分析,并基于规范法的优化设计结果相比较,得出本文的设计方法更为合理的参考结论。

关键词: 土钉支护, 三维有限元, 遗传算法, 极限平衡

Abstract: The interaction between soil nailing and soil is considered and a true three-dimensional finite element model has been developed to analyze the strain-stress and the deformation performances of soil nailings. The optimum design method with deformation control and stress control of soil-nail retaining structure is presented. Using genetic algorithms and complex method, the mathematical model of structural optimal design is established regarding the stress and the deformation as constraint conditions and regarding the project cost as objective function; and the calculation program is compiled correspondingly. Taking a case study and comparing with the result of specification method and the optimal results based on specification method, the present optimal method is more reasonable.

Key words: soil nailing, 3-D finite elements, genetic algorithms, ultimate balance

中图分类号: 

  • TU 317
[1] 余国, 谢谟文, 孙紫豪, 刘鹏. 基于GIS的三维对称边坡滑面正应力分布 逼近函数构造[J]. 岩土力学, 2019, 40(6): 2332-2340.
[2] 马春辉, 杨杰, 程琳, 李婷, 李雅琦, . 基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究[J]. 岩土力学, 2019, 40(6): 2397-2406.
[3] 李书兆, 王忠畅, 贾 旭, 贺林林, . 软黏土中张紧式吸力锚循环承载力简化计算方法[J]. 岩土力学, 2019, 40(5): 1704-1712.
[4] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[5] 余 国, 谢谟文, 郑正勤, 覃事河, 杜 岩, . 基于GIS的边坡稳定性计算方法研究[J]. 岩土力学, 2019, 40(4): 1397-1404.
[6] 郭红仙, 周 鼎. 软土中基坑土钉支护稳定性问题探讨[J]. 岩土力学, 2018, 39(S2): 398-404.
[7] 温树杰,梁 超,宋亮亮,刘 刚,. 基于最小势能法的三维临界滑裂面搜索方法[J]. , 2018, 39(7): 2708-2714.
[8] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[9] 杨明辉,戴夏斌,赵明华,罗 宏. 曲线滑裂面下有限宽度填土主动土压力计算[J]. , 2017, 38(7): 2029-2035.
[10] 刘 勇,戚 蓝,李少明,郭浩洋,. 考虑变井阻和涂抹效应的真空预压三维有限元分析[J]. , 2017, 38(5): 1517-1523.
[11] 卢坤林,王运敏,朱大勇,. 三维滑体锚固力计算方法及工程应用[J]. , 2017, 38(2): 501-506.
[12] 张 媛,董建华,董旭光,王永胜, . 季节性冻土区土钉边坡支护结构冻融反应分析[J]. , 2017, 38(2): 574-582.
[13] 邓东平,李 亮. 基于滑动面应力假设下的三维边坡稳定性极限平衡法研究[J]. , 2017, 38(1): 189-196.
[14] 刘振平,杨 波,刘 建,贺怀建,. 基于GRASS GIS与TIN滑动面的边坡三维极限平衡方法研究[J]. , 2017, 38(1): 221-228.
[15] 周扬一,冯夏庭,徐鼎平,贺明武,. 大型地下厂房块体稳定性简便分析方法[J]. , 2016, 37(8): 2391-2398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 齐吉琳,马 巍. 冻土的力学性质及研究现状[J]. , 2010, 31(1): 133 -143 .
[3] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[4] 李 峰,王晓睿,罗晓辉,郭院成. 基坑坑底稳定性的机会约束评估方法[J]. , 2010, 31(12): 3867 -3874 .
[5] 黎剑华,徐 斌,徐满清,刘优平. 层状饱和土体中排桩对简谐荷载隔振效果分析[J]. , 2010, 31(S2): 12 -18 .
[6] 曾文泽,艾智勇. 轴对称多层可压缩渗透各向异性岩基固结分析[J]. , 2010, 31(S2): 212 -217 .
[7] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[8] 苏国韶,张克实,吕海波. 位移反分析的粒子群优化-高斯过程协同优化方法[J]. , 2011, 32(2): 510 -515 .
[9] 高文华,朱建群,张志敏,黄自永. 基于Hoek-Brown非线性破坏准则的软岩地基极限承载力数值模拟[J]. , 2011, 32(2): 593 -598 .
[10] 冷 艺,栾茂田,许成顺,马太雷. 复杂应力条件下饱和砂土排水剪切强度的试验研究[J]. , 2009, 30(6): 1620 -1626 .