›› 2013, Vol. 34 ›› Issue (10): 2737-2755.

• 基础理论与实验研究 •    下一篇

最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则

陈国兴1, 2,金丹丹1, 2,常向东3,李小军2, 4,周国良3   

  1. 1.南京工业大学 岩土工程研究所,南京 210009;2.江苏省土木工程防震技术研究中心,南京 210009; 3.环境保护部核与辐射安全中心,北京 100082;4.中国地震局地球物理研究所,北京 100081
  • 收稿日期:2013-03-30 出版日期:2013-10-09 发布日期:2013-10-18
  • 作者简介:陈国兴,男,1963年生,博士,教授,主要从事土动力学与岩土地震工程研究
  • 基金资助:

    国家科技重大专项(No. 2011ZX06002-010-15);国家自然基金项目(No. 41172258);教育部高等学校博士学科点专项科研基金项目 (No. 20113221110009)。

Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils

CHEN Guo-xing1, 2, JIN Dan-dan1, 2, CHANG Xiang-dong3, LI Xiao-jun2, 4, ZHOU Guo-liang3   

  1. 1.Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing 210009, China; 3. Nuclear and Radiation Safety Center, the Ministry of Environmental Protection of P. R. China, Beijing 100082, China; 4. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
  • Received:2013-03-30 Online:2013-10-09 Published:2013-10-18

摘要: 回顾了1994年美国Northridge地震、1995年日本阪神地震、1999年土耳其Kocaeli地震、1999年台湾集集地震、2008年中国汶川地震、2010年智利Maule地震、2010~2011新西兰Darfield地震及余震、2011年东日本地震中大量的、不同类型的液化实例调查与研究,发现这些地震的液化具有以下特点:(1)罕见的特大地震(Mw9.0)使远离震中300~400 km的新近人工填土发生严重的大规模液化;(2)特大地震(Ms8.0、Mw8.8)使远离震中的低烈度Ⅴ~Ⅵ度地区发生严重液化;(3)海岸、河岸附近地区的新近沉积冲积、湖积土,填筑时间不到50年的含细粒、砂砾人工填土,容易发生严重液化;(4)天然的砂砾土层液化发生严重液化;(5)发生了深达20 m的土层液化现象;(6)松散土层液化后可以恢复到震前状态并再次发生液化;(7)高细粒(粒径≤75 ?m)含量≥50%或高黏粒(粒径≤5 ?m)含量≥25%的低-中塑性土严重液化,对介于类砂土与类黏土之间的过渡性态土,有时地表未见液化现象;(8)液化土层的深度较深或厚度较小时,容易出现地面裂缝而无喷砂现象;有较厚的上覆非液化土层时,场地液化不一定伴随地表破坏。液化实例证明,第四系晚更新世Q3地层可以发生严重液化;黏粒含量不是评价细粒土液化可能性的一个可靠指标;低液限、高含水率的细粒土易发生液化,采用塑性指数PI、含水率wc与液限LL之比作为细粒土液化可能性评价的指标是适宜的。综合Boulanger和Idriss、Bray和Sincio、Seed和Cetin等的液化实例调查与室内试验研究成果,建议细粒土液化可能性的评价准则如下:PI <12且wc/LL>0.85的土为易液化土,12<PI≤20和/wc/LL≥0.80的土为可液化土;PI >20或wc/LL<0.80的土为不液化土。

关键词: 地震, 土体液化, 细粒土, 塑性指数, 液化可能性, 准则

Abstract: This paper reviews the characteristics of soil liquefaction-induced damage observed from the Northridge, USA earthquake, 1994, the Hanshin, Japan earthquake, 1995, the Kocaeli, Turkey earthquake, 1999, the Chi-Chi, Taiwan earthquake, 1999, in China, the Wenchuan, China earthquake, 2008, the Maule, Chile Earthquake, 2010, the Darfield and Christchurch, New Zealand earthquake, 2010 to 2011, and the great East Japan earthquake, 2011. There are several characteristics in the occurrence of liquefaction and consequence damage which are different from a number of cases experienced in these earthquakes. These are summed up as follows: (1) The unprecedented long duration of the shaking and extensive makes the occurrence of liquefaction in the newly reclaimed land, fill area is 300~400 km distant from the epicentral area attributed to the rarely encountered huge moment magnitude Mw9.0 earthquake. (2) A number of site liquefactions and lateral spreadings are observed in seismic intensity scales of Ⅴ and Ⅵ, an area of low intensity is attributed to the encountered magnitude scale Ms8.0 and Mw8.8 earthquakes. (3) Severe liquefactions in sites are observed having young alluvial, lacustrine deposits along rivers and sea bay areas, and in reclaimed land, fill area contains fine-grained soils, gravel sands in less than fifty years. (4) Severe liquefaction in natural gravel sand deposits occurs. (5) Soil liquefies in depth of 20 m. (6) Liquefaction and re-liquefaction of the sites over a large region do not result in densification of the loose deposit, future earthquakes of sufficient magnitude can again induce liquefaction. (7) Severe liquefaction occurs in low to moderate plasticity soils containing more than 50% fines content (grain size is, smaller than 0.075 mm) or more than 25% of clay content (grain size is, smaller than 0.005mm), however, field evidence of liquefaction may not be observed in transition behavior fine-grained soils between sand-like and clay-like behaviors. (8) Ground cracking without venting of sand boils is more likely as the depth and thickness of the liquefied layer increases and decreases, respectively; vented material, provided field evidence of liquefaction, may be absent due to the large depth to, and small thickness of, the liquefied layers. There are a number of spectacular case histories of liquefaction of sediments deposited in late Pleistocene time Q3. The clay content is not a reliable index for evaluating between clay-like and sand-like behaviors in a fine-grained soil. Fine-grained soils with the low plasticity index PI and high water content wc are susceptible to liquefaction; the use of the PI and water content to liquid limit ratio wc/LL is a good criterion of liquefaction possibility; for soils. Based on work in progress of the case histories of liquefaction and the results of laboratory tests for fine-grained soils from Boulanger, Idriss, Bray and Sancio, Seed and Cetin et al, a new liquefaction possibility criterion for soils is proposed as follows: soils with PI<12 and wc/LL>0.85 are susceptible to liquefaction; soils with 1220 or wc/LL<0.80 is not susceptible to liquefaction.

Key words: earthquake, soil liquefaction, fine-grained soils, plasticity index, possibility of liquefaction, criteria

中图分类号: 

  • TU 441+.2
[1] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[2] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[3] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[4] 尹光志, 鲁俊, 张东明, 李铭辉, 邓博知, 刘 超, . 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学, 2019, 40(S1): 1-10.
[5] 聂秀鹏, 逄焕平, 孙志彬, 谢松梅, 侯超群. 三维加筋边坡地震稳定性上限分析[J]. 岩土力学, 2019, 40(9): 3483-3492.
[6] 王瑞, 闫帅, 柏建彪, 常治国, 宋远霸, . 端帮开采下煤柱破坏宽度计算及失稳机制研究[J]. 岩土力学, 2019, 40(8): 3167-3180.
[7] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[8] 韩俊艳, 钟紫蓝, 李立云, 赵密, 万宁潭, 杜修力. 纵向非一致激励下自由场土体的非线性 地震反应研究[J]. 岩土力学, 2019, 40(7): 2581-2592.
[9] 何颖, 于琴, 刘中宪, . 考虑散射效应沉积河谷空间相关多点地震动模拟[J]. 岩土力学, 2019, 40(7): 2739-2747.
[10] 袁维, 刘尚各, 聂庆科, 王伟, . 基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究[J]. 岩土力学, 2019, 40(7): 2789-2798.
[11] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[12] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
[13] 徐 鹏, 蒋关鲁, 雷 涛, 刘 琪, 王智猛, 刘 勇, . 考虑填土强度的加筋土挡墙动位移计算[J]. 岩土力学, 2019, 40(5): 1841-1846.
[14] 罗斌玉, 叶义成, 曹 中, 王其虎, 李玉飞, 陈 虎, . 基于Mohr-Coulomb准则的缓倾斜层状矿床 矿柱强度估算及倾角效应[J]. 岩土力学, 2019, 40(5): 1940-1946.
[15] 刘汉香, 许 强, 朱 星, 周小棚, 刘文德. 含软弱夹层斜坡地震动力响应过程 的边际谱特征研究[J]. 岩土力学, 2019, 40(4): 1387-1396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[2] 赵洪宝,尹光志,李小双. 烧变后粗砂岩抗拉特性试验研究[J]. , 2010, 31(4): 1143 -1146 .
[3] 陈智强,张永兴,周检英. 基于数字散斑技术的深埋隧道围岩岩爆倾向相似材料试验研究[J]. , 2011, 32(S1): 141 -148 .
[4] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[5] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[6] 巩思园,窦林名,何 江,贺 虎,陆菜平,牟宗龙. 深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J]. , 2012, 33(1): 41 -47 .
[7] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[8] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[9] 孟 振,陈锦剑,王建华,尹振宇. 砂土中螺纹桩承载特性的模型试验研究[J]. , 2012, 33(S1): 141 -145 .
[10] 刘 春 ,赵洪波 ,白世伟 . 土工格栅在治理软土路基沉降问题中的研究[J]. , 2003, 24(6): 1070 -1073 .