›› 2006, Vol. 27 ›› Issue (3): 414-417.

• 基础理论与实验研究 • 上一篇    下一篇

单轴压缩岩样轴向回跳及侧向回跳理论研究

王学滨   

  1. 辽宁工程技术大学 力学与工程科学系,辽宁 阜新123000
  • 收稿日期:2004-06-03 出版日期:2006-03-10 发布日期:2013-11-06
  • 作者简介:王学滨,男,1975年生,讲师,博士研究生,主要从事非均质材料(岩石、混凝土及金属)变形、破坏及稳定性研究
  • 基金资助:

    国家自然科学青年基金项目(No. 50309004)。

Theoretical relation between snap-back of axial stress-strain curve and snap- back of axial stress-lateral strain curve for rock specimen in uniaxial compression

WANG Xue-bin   

  1. Department of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China
  • Received:2004-06-03 Online:2006-03-10 Published:2013-11-06

摘要: 研究了单轴压缩条件下轴向回跳及侧向回跳之间的关系。在应变软化阶段,试样的弹性轴向应变及弹性侧向轴向应变由虎克定律确定;试样的轴向塑性应变及侧向塑性轴向应变由梯度塑性理论确定,它们与应力水平、剪切带倾角及宽度、软化模量及试样的尺寸有关。根据轴向应力-应变曲线及侧向应力-应变曲线软化段斜率的正负,得到了轴向回跳及侧向回跳的条件。轴向回跳的原因是轴向弹性应变的恢复快于轴向塑性应变的增加。侧向回跳的原因是侧向弹性应变的恢复快于侧向塑性应变的增加。当剪切带倾角的正切小于泊松比与试样宽高比之积时,若侧向变形发生回跳,则轴向变形就发生回跳;反之,若轴向变形发生回跳,则侧向变形就发生回跳。对于常规岩样,若侧向发生回跳,则轴向必定是回跳的。在应变软化阶段,根据轴向应变及侧向应变是否发生回跳,轴向应变与侧向应变曲线被划分为4种类型:即轴向回跳及侧向回跳情形、轴向回跳及侧向回跳情形、轴向不回跳及侧向回跳情形及轴向回跳及侧向不回跳情形,并得到了各种类型的条件。

关键词: 岩石试样, 轴向应力, 轴向应变, 侧向应变, 轴向回跳, 侧向回跳, 应变软化

Abstract: Relation between the snap-back (Class II behavior in rock mechanics) of axial stress-axial strain curve of rock specimen in uniaxial compression subjected to shear failure in the form of a single shear band and the snap-back of axial stress-lateral strain curve was investigated analytically. In strain-softening stage beyond the peak compressive stress, the axial and lateral elastic strains were determined by Hooke’s law, while the axial and lateral plastic strains were derived by gradient-dependent plasticity where an characteristic length controls the thickness of shear band. The axial and lateral plastic strains are concerned with the compressive stress level, the inclination angle and the thickness of shear band, the softening modulus, and the geometrical size of rock specimen. According to the signs of the post-peak slopes of axial stress-axial strain curve and axial stress-lateral strain curve, the conditions of axial and lateral snap-backs were proposed. The reason for axial snap-back is that the recovery of axial elastic strain is faster than the increase of axial plastic strain. Similarly, the reason for lateral snap-back is that the recovery of lateral elastic strain is faster than the increase of lateral plastic strain. If the tangent of the inclination angle of shear band is less than Poisson’s ratio multiplied by the ratio of width to height of the specimen, then the snap-back in axial direction occurs once the lateral snap-back takes place. Otherwise, the lateral snap-back occurs when the axial snap-back takes place. For the commonly used rock specimen (height/width is about 2) in laboratory, the lateral snap-back leads to the axial snap-back. In the strain-softening stage, the axial strain-lateral strain curve can be classified into four categories: axial snap-back and lateral snap-back, axial snap-through (Class I behavior) and lateral snap-through, axial snap-back and lateral snap-through, and axial snap-through and lateral snap-back. Conditions of these four kinds of cases were presented.

Key words: rock specimen, axial stress, axial strain, lateral strain, snap-back of axial deformation, snap-back of lateral deformation, strain-softening

中图分类号: 

  • TU 451
[1] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[2] 徐 鹏, 蒋关鲁, 雷 涛, 刘 琪, 王智猛, 刘 勇, . 考虑填土强度的加筋土挡墙动位移计算[J]. 岩土力学, 2019, 40(5): 1841-1846.
[3] 王凤云, 钱德玲, . 基于统一强度理论深埋圆形隧道围岩的剪胀分析[J]. 岩土力学, 2019, 40(5): 1966-1976.
[4] 王 腾, 吴 瑞. 黏土中海底管线竖向贯入阻力研究[J]. 岩土力学, 2019, 40(3): 871-878.
[5] 王凤云,钱德玲. 基于切向应变软化的深埋圆形隧道围岩弹塑性分析[J]. , 2018, 39(9): 3313-3320.
[6] 王 振,叶晓明,刘永新,. 考虑滑坡渐进破坏的改进简布条分法[J]. , 2018, 39(2): 675-682.
[7] 邓 琴,汤 华,王东英,秦雨樵,吴振君,. 基于应变软化的多阶边坡稳定分析[J]. , 2018, 39(11): 4109-4116.
[8] 刘冬桥,王 焯,张晓云, . 岩石应变软化变形特性及损伤本构模型研究[J]. , 2017, 38(10): 2901-2908.
[9] 范志强,唐辉明,汪丁建,刘 凯,温 韬. 考虑土体应变软化特性的滑坡抗滑桩设计推力研究[J]. , 2016, 37(S2): 665-672.
[10] 韩龙强,吴顺川,李志鹏, . 基于Hoek-Brown准则的非等比强度折减方法[J]. , 2016, 37(S2): 690-696.
[11] 蒋 欢 ,王水林 ,王万军,. 一种求解应变软化岩体中球腔问题的数值方法[J]. , 2016, 37(S2): 697-705.
[12] 刘 刚,姜清辉,熊 峰,张小波,. 多节理岩体裂纹扩展及变形破坏试验研究[J]. , 2016, 37(S1): 151-158.
[13] 薛海斌 ,党发宁,尹小涛,雷 曼,杨 超,. 基于动力学和材料软化特性的边坡渐进破坏特征研究[J]. , 2016, 37(8): 2238-2246.
[14] 郁邦永 ,陈占清,吴疆宇,李 樯,丁其乐,. 饱和级配破碎泥岩压实与粒度分布分形特征试验研究[J]. , 2016, 37(7): 1887-1894.
[15] 薛海斌 ,党发宁 ,尹小涛 ,杨 超 ,刘云贺,. 基于强度储备的边坡非等比例双安全系数研究[J]. , 2016, 37(4): 929-934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[3] 任 松,姜德义,杨春和,藤宏伟. 共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J]. , 2010, 31(2): 416 -421 .
[4] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[5] 李荣涛. 一种高温下混凝土化学塑性-损伤耦合本构模型[J]. , 2010, 31(5): 1585 -1591 .
[6] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[7] 沈银斌,朱大勇,汪鹏程,姚华彦. 基于数值应力场的边坡临界滑动场[J]. , 2010, 31(S1): 419 -423 .
[8] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[9] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[10] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .