›› 2006, Vol. 27 ›› Issue (3): 487-490.

• 基础理论与实验研究 • 上一篇    下一篇

大连路隧道联络通道冻土帷幕数值分析

武亚军1, 2,杨 敏1, 2,李大勇3   

  1. 1.同济大学 岩土工程重点实验室,上海 200092;2.同济大学 土木工程学院地下建筑与工程系,上海 200092; 3.山东科技大学 土木建筑学院,青岛 266510
  • 收稿日期:2004-07-19 出版日期:2006-03-10 发布日期:2013-11-06
  • 作者简介:武亚军,男,1973年生,博士后,从事深基坑开挖与支护、边坡稳定性数值分析、地下工程结构计算方面的研究工作
  • 基金资助:

    中国博士后科学基金资助(No. 20040350494)

Numerical analysis of freezing soil curtain of tunnel connected aisle

WU Ya-jun1,2, YANG Min1,2, LI Da-yong3   

  1. 1.Key Laboratory of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2.Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai 200092, China; 3.College of Civil & Architecture Engineering, Shandong University of Science & Technology, Qingdao 266510, China
  • Received:2004-07-19 Online:2006-03-10 Published:2013-11-06

摘要: 从数值方法的角度对大连路隧道联络通道冻结法施工冻结帷幕的变形与应力进行了分析与安全评价,详细讨论了帷幕中位移及应力的分布情况,并指出了帷幕最不利状态的分布位置在帷幕与已建隧道接触处,由于该处的冻结效果最差,所以施工中必须特别注意;对于上海地区类似工程来说,1.8 m厚的冻土帷幕是可以满足施工要求的,从而为今后联络通道数值分析及冻结法施工提供了一定的经验。

关键词: 大连路隧道, 联络通道, 冻结法, 冻土帷幕, 数值分析, FLAC3D

Abstract: The deformation and stress of freezing soil curtain are analyzed by numerical method during the construction of connected aisle at Dalian Road tunnel; and the stability of freezing soil curtain is also evaluated. The distribution laws for displacements and stresses of freezing soils due to the excavating soil are also discussed in detail. Based on the above research, the most dangerous positions of freezing soil curtain lie in the interface between the soil curtain and the built tunnels. It should be noticed more carefully during construction due to the worse effect of freezing here. For alike projects such as freezing soil curtain in Shanghai, the freezing soil curtain with 1.8m thickness can satisfy the demands of construction. Therefore, this paper could be available for the construction of the connected aisle in theory and practice.

Key words: Dalian road tunnel, connected aisle, freezing method, freezing soil curtain, numerical analysis, FLAC3D

中图分类号: 

  • U 456
[1] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[2] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[3] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[4] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[5] 刘阳辉, 胡向东, . 卸载状态下立井冻结壁的力学分析[J]. 岩土力学, 2018, 39(S2): 344-350.
[6] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
[7] 刘 建,赵国彦,梁伟章,吴 浩,彭府华,. 非均匀岩石介质单轴压缩强度及变形破裂规律的数值模拟[J]. , 2018, 39(S1): 505-512.
[8] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[9] 阿比尔的,郑颖人,冯夏庭,丛 宇,. 平行黏结模型宏细观力学参数相关性研究[J]. , 2018, 39(4): 1289-1301.
[10] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
[11] 邹佑学,王 睿,张建民, . 砂土液化大变形模型在FLAC3D中的开发与应用[J]. , 2018, 39(4): 1525-1534.
[12] 黄诗冰,刘泉声,程爱平,刘艳章, . 低温裂隙岩体水-热耦合模型研究及数值分析[J]. , 2018, 39(2): 735-744.
[13] 郭浩然,乔 兰,李 远. 能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J]. , 2018, 39(11): 4042-4052.
[14] 李一凡,董世明,潘 鑫,李念斌,原 野. 砂岩的I/III复合型断裂试验研究[J]. , 2018, 39(11): 4063-4070.
[15] 郭 洋,李 清,徐文龙,钱 路,田 策. 条形药包爆破预制贯通裂纹动态断裂过程研究[J]. , 2018, 39(10): 3882-3890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王协群,张有祥,邹维列,熊海帆. 降雨入渗条件下非饱和路堤变形与边坡的稳定数值模拟[J]. , 2010, 31(11): 3640 -3644 .
[6] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 路 威,项彦勇,唐 超. 填砂裂隙岩体渗流传热模型试验与数值模拟[J]. , 2011, 32(11): 3448 -3454 .
[10] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .