›› 2005, Vol. 26 ›› Issue (3): 381-386.

• 基础理论与实验研究 • 上一篇    下一篇

可液化土中地铁结构的地震响应

刘华北,宋二祥   

  1. 清华大学 土木工程系,北京 100084
  • 收稿日期:2003-12-11 出版日期:2005-03-10 发布日期:2013-11-21
  • 作者简介:刘华北,男,1973年生,讲师,博士,主要从事地震岩土工程研究。
  • 基金资助:

    国家自然科学基金项目(No. 50378050),北京市自然科学基金重点项目(No. 8011002)。

Earthquake induced liquefaction response of subway structure in liquefiable soil

LIU Hua-bei, SONG Er-xiang   

  1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2003-12-11 Online:2005-03-10 Published:2013-11-21

摘要: 在饱和土耦合作用与土和结构相互作用理论基础上,以地铁车站为例,用有限元法研究地下结构在地震液化作用下的响应。所采用的软件为动力两相体非线性有限元软件Dyna-Swandyne-II,该软件可以应用先进的Pastor-Zienkiewicz III广义塑性模型模拟可液化土的动力特性,应用u-p形式的Biot方程,在有限元分析中充分考虑孔隙水与土之间的耦合,同时考虑地下结构与饱和土在动力作用下的非线性相互作用。分析了地铁车站的动力响应,包括地铁内力、加速度以及地铁位移。研究结果表明,地铁结构在地震液化作用下会产生较大的上浮,从而对结构造成比较严重的破坏;地铁结构在地震作用下的最大内力位于结构的交接处。因此,结构交接处的配筋应该格外小心。

关键词: 地下结构, 液化, 动力相互作用, 动力耦合分析, 上浮

Abstract: Based on the theories of coupled interaction in saturated soil and dynamic soil-structure interaction, the response of subway structure in fully saturated liquefiable soil under earthquake excitation is investigated using the effective-stress based finite element program Dyna-Swandyne-II. A generalized plasticity model, Pastor-Zienkiewicz III model, is used to model the cyclic behavior of soil; and finite element procedure based on the u-p form of Biot theory is employed to conduct the coupled analysis. The nonlinearity of the interaction between soil and subway structure is fully considered. The dynamic response of subway structure, including the internal forces, the acceleration, and the vertical and horizontal displacements, are analyzed. The results showed that the subway structure may uplift due to the earthquake induced liquefaction, which shall lead to severe damage in the structure; and that the maximum seismic internal forces occurred at the connections of the structure elements and their reinforcement must be carefully designed.

Key words: underground structure, liquefaction dynamic interaction, dynamic coupled analysis, uplift

中图分类号: 

  • TV 223
[1] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[2] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[3] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[4] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[5] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[6] 许成顺, 豆鹏飞, 高畄成, 陈 苏, 杜修力, . 地震动持时压缩比对可液化地基地震反应 影响的振动台试验[J]. 岩土力学, 2019, 40(1): 147-155.
[7] 王海波,吴 琪,杨 平,. 细粒含量对饱和砂类土液化强度的影响[J]. , 2018, 39(8): 2771-2779.
[8] 王小雯,张建民,李焯芬, . 波浪作用下饱和砂质海床土体与管线相互作用规律研究[J]. , 2018, 39(7): 2499-2508.
[9] 韩 冰,梁建文,朱 俊,. 深厚饱和软土场地中透镜体对上部结构地震响应的影响[J]. , 2018, 39(6): 2227-2236.
[10] 付海清,袁晓铭,王 淼,. 基于现场液化试验的饱和砂土孔压增量计算模型[J]. , 2018, 39(5): 1611-1618.
[11] 方 志,陈育民,何森凯, . 基于单相流的减饱和砂土流固耦合改进算法[J]. , 2018, 39(5): 1851-1857.
[12] 邹佑学,王 睿,张建民, . 砂土液化大变形模型在FLAC3D中的开发与应用[J]. , 2018, 39(4): 1525-1534.
[13] 宋林辉,王宇豪,付 磊,梅国雄,. 软黏土中地下结构浮力测试试验与分析[J]. , 2018, 39(2): 753-758.
[14] 周恩全, 朱晓冬, 陆建飞, 王炳辉, . 液化后砂土流体特性测试装置的研发及试验研究[J]. 岩土力学, 2018, 39(12): 4698-4706.
[15] 周正龙,陈国兴,赵 凯,吴 琪,马维嘉. 循环加载方向角对饱和粉土不排水动力特性的影响[J]. , 2018, 39(1): 36-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[3] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[4] 朱万成,魏晨慧,田 军,杨天鸿,唐春安. 岩石损伤过程中的热-流-力耦合模型及其应用初探[J]. , 2009, 30(12): 3851 -3857 .
[5] 齐吉琳,马 巍. 冻土的力学性质及研究现状[J]. , 2010, 31(1): 133 -143 .
[6] 陈昌禄,邵生俊,郑万坤,牛洪涛. 黄土高边坡的三维动力稳定性分析 ——以固原九龙山边坡为例[J]. , 2010, 31(1): 229 -232 .
[7] 乔金丽,张义同,高 健. 考虑渗流的多层土盾构隧道开挖面稳定性分析[J]. , 2010, 31(5): 1497 -1502 .
[8] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[9] 肖尊群,刘宝琛,乔世范,杨小礼,吴国栋. 新型酸性水玻璃-碳酸钙注浆材料试验研究[J]. , 2010, 31(9): 2829 -2834 .
[10] 李 峰,王晓睿,罗晓辉,郭院成. 基坑坑底稳定性的机会约束评估方法[J]. , 2010, 31(12): 3867 -3874 .