›› 2006, Vol. 27 ›› Issue (10): 1815-1818.

• 基础理论与实验研究 • 上一篇    下一篇

地震历史对砂土抗液化性能影响的试验研究

苏 栋1,李相崧2   

  1. 1. 深圳大学 土木工程系,深圳 518060;2. 香港科技大学 土木工程系,香港
  • 收稿日期:2005-03-29 出版日期:2006-10-10 发布日期:2013-11-29
  • 作者简介:苏栋,男,1978年生,博士,讲师,主要从事砂土液化、桩-土相互作用、岩土工程数值分析等方面的研究
  • 基金资助:

    香港政府研究资助局(Hong Kong RGC)资助项目(No. HKUST6084/00E)

Centrifuge investigation on effect of seismic history on resistance of sand to liquefaction

SU Dong1, LI Xiang-song2   

  1. 1. Department of Civil Engineering, Shenzhen University, Shenzhen 518060, China; 2. Department Civil Engineering, Hong Kong University of Science and Technology, Hong Kong, China
  • Received:2005-03-29 Online:2006-10-10 Published:2013-11-29

摘要: 为探讨地震历史对饱和砂土抗液化性能的影响,通过离心机动力模型试验,观测了遭受过不同强度地震的饱和砂土水平场地在再次地震荷载作用下的响应,包括超静孔隙水压力的发展和土体的变形。研究表明,小地震有利于增强砂土颗粒之间的咬合及结构的稳定性,极大地提高了其抗液化能力,而遭受强地震并且发生液化的砂土,由于在沉积过程中形成的不稳定结构,则可能在将来强度相对较小的地震中再次液化。试验结果说明了地震历史对砂土液化性能有重大影响及进一步开展砂土细观结构研究的重要性。

关键词: 地震历史, 砂土, 液化, 振动台, 离心机

Abstract: To investigate the effect of seismic history on the liquefaction resistance of sand, two groups of centrifuge dynamic tests have been performed on models of saturated sand deposit. The response of excess pore pressure as well as deformation of soil column were monitored and recorded during testing. It was found that small earthquake could bring beneficial effect on the sand resistance to liquefaction by strengthening interlocking between particles and forming a more stable structures. On the other hand, re-liquefaction may occur on a once liquefied site when it is subjected to an earthquake with magnitude less than that causes the first liquefaction, due to the unstable structure formed in the re-sedimentation process. The experimental finding indicates the impact of seismic history on the liquefaction characteristics of sand, as well as the significance of study on microstructure of sand.

Key words: seismic history, sand, liquefaction, shaking table, centrifuge

中图分类号: 

  • TU 443
[1] 韩俊艳, 侯本伟, 钟紫蓝, 赵密, 李立云, 杜修力. 多点非一致激励下埋地管道多台阵振动台 试验方案研究[J]. 岩土力学, 2019, 40(6): 2127-2139.
[2] 卢俊龙, 张荫, . 地基与密肋复合墙结构相互作用系统频域 地震响应试验研究[J]. 岩土力学, 2019, 40(6): 2163-2171.
[3] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[4] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[5] 孙逸飞, 陈 成, . 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822.
[6] 朱仁杰, 车爱兰, 严 飞, 文 海, 葛修润, . 含贯通性结构面岩质边坡动力演化规律[J]. 岩土力学, 2019, 40(5): 1907-1915.
[7] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[8] 刘汉香, 许 强, 朱 星, 周小棚, 刘文德. 含软弱夹层斜坡地震动力响应过程 的边际谱特征研究[J]. 岩土力学, 2019, 40(4): 1387-1396.
[9] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[10] 孙广臣, 谢佳佑, 何 山, 傅鹤林, 江学良, 郑 亮, . 不同方向地震激励下软岩桥隧 搭接段动力响应研究[J]. 岩土力学, 2019, 40(3): 893-902.
[11] 张 勋, 黄茂松, 胡志平, . 砂土中单桩水平循环累积变形特性模型试验[J]. 岩土力学, 2019, 40(3): 933-941.
[12] 陆 勇, 周国庆, 杨冬英, 宋家庆, . 砂土剪胀软化、剪缩硬化统一本构的显式计算[J]. 岩土力学, 2019, 40(3): 978-986.
[13] 徐 鹏, 蒋关鲁, 邱俊杰, 高泽飞, 王智猛, . 整体刚性面板加筋土挡墙振动台模型试验研究[J]. 岩土力学, 2019, 40(3): 998-1004.
[14] 蔡奇鹏, 甘港璐, 吴宏伟, 陈星欣, 肖朝昀, . 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40(3): 1067-1075.
[15] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢兴华,王国庆. 深厚覆盖层坝基防渗墙深度研究[J]. , 2009, 30(9): 2708 -2712 .
[2] 宋 晶,王 清,孙 铁,李晓茹,张中琼,焦志亮. 吹填土自重沉淤阶段孔隙水压力消散的试验研究[J]. , 2010, 31(9): 2935 -2940 .
[3] 王学良,张路青,张中俭,傅 燕,刘恩聪,高 千. 龙游石窟3-2号岩柱变形破坏对3号洞应力变化的影响[J]. , 2010, 31(12): 3919 -3927 .
[4] 孔纲强,杨 庆,年廷凯,胡庆春. 扩底楔形桩竖向抗压和负摩阻力特性研究[J]. , 2011, 32(2): 503 -509 .
[5] 陈 明,卢文波,周创兵,罗 忆. 初始地应力对隧洞开挖爆生裂隙区的影响研究[J]. , 2009, 30(8): 2254 -2258 .
[6] 胡云世,苏 辉,成怡冲,艾智勇. 层状可压缩岩基三维固结问题的状态空间解[J]. , 2011, 32(S1): 176 -180 .
[7] 郑杰文 ,贾永刚 ,刘晓磊 ,单红仙 ,杨忠年. 黄河三角洲沉积物抗侵蚀性动态变化差异研究[J]. , 2011, 32(S1): 290 -0296 .
[8] 张 红 ,郑颖人 ,杨 臻 ,王谦源 ,葛苏鸣. 黄土隧洞支护结构设计方法探讨[J]. , 2009, 30(S2): 473 -478 .
[9] 戚 炜 ,王勇智 ,姜伏伟. 黄河某高拱坝岩体力学参数的选取[J]. , 2011, 32(S2): 478 -483 .
[10] 陈建功 ,周陶陶 ,张永兴. 深部洞室围岩分区破裂化的冲击破坏机制研究[J]. , 2011, 32(9): 2629 -2634 .