›› 2014, Vol. 35 ›› Issue (1): 273-278.

• 数值分析 • 上一篇    下一篇

围堰工程对污水管线影响的数值模拟与评估

芮 瑞1,杨 繁1,刘 鹏2   

  1. 1. 武汉理工大学 土木工程与建筑学院,武汉 430070;2. 广州市水务规划勘测设计研究院,广州 510640
  • 收稿日期:2012-10-12 出版日期:2014-01-10 发布日期:2014-01-14
  • 作者简介:芮瑞,男,1981年生,副教授,主要从事岩土工程加固技术与理论方面的研究。
  • 基金资助:

    国家自然科学基金(No. 51208403);基金中央高校基本科研业务费专项资金资助(No. 2013-Ⅱ-018、2011-Ⅳ-046)。

Numerical simulation and assessment of impacts of cofferdam construction on sewage pipe lines

RUI Rui1,YANG Fan1,LIU Peng2   

  1. 1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; 2. Guangzhou Institute of Water Plan Investigation & Design, Guangzhou 510640, China
  • Received:2012-10-12 Online:2014-01-10 Published:2014-01-14

摘要: 城市内新建工程周边环境复杂,地下管线种类繁多,在设计之初就需要考虑施工以及工程营运对其安全的影响,但目前缺乏统一的影响评价标准,须按照管线功能以及所属部门的相关规程作为其评价依据。该项目的管线为下穿围堰的2条直径为1.2 m、壁厚为12 mm的排污管,采用FLAC3D建立了围堰工程对大直径有压焊接薄壁排污管道的三维数值计算模型,分4种不同施工工况进行了管道变形和应力计算。依据相关规范的要求,从管道本身的安全性和正常使用要求出发,并采用第4强度理论计算了相当应力,最大值为136.61 MPa,出现在最后抽水工况下管1的外侧。最大沉降量39.3 mm对应的管体倾斜量为0.275%。将其结果与理论值进行对比,理论计算得到的相当应力最大值为188.18 MPa,高于数值计算结果,其原因为理论方法将各影响效应分别计算并进行简单相加。结果表明,拟建围堰工程对该管线的影响可控,数值方法较规范方法计算结果更为合理,为类似工程对管线影响评价提供了参考。

关键词: 大直径薄壁钢管, 污水管道, 数值模拟, 影响评估

Abstract: There are a lot of kinds of underground pipes and structures in the urban area; the safety and regularly running of which must be taken into account during newly constructions. There are no generalized criterions to evaluate the safety and regularly running of them at present. It should be investigated which sectors the pipes belong to before construction, then their design and construction specifications can be used in the safety evaluation. Drainage design specifications are used to evaluate the safety of 2 large diameter steel sewage pipes with diameter of 1.2 m and thickness of 12 mm, during the cofferdam construction in the Litchi River in Guangzhou city. In view of the calculation methods in the design specification can not consider the interactions of all the effects during the construction. A three-dimensional simulation model of the whole cofferdam construction field stratum with the 2 large diameter steel sewage pipes is established. Deformation and stress of the pipes under 4 different construction conditions are calculated with FLAC3D. The equivalent stresses are calculated by fourth strength theory. The maximum value is 136.61 MPa, which appears at the outer surface of pipe No.1 under the last construction condition. The maximum settlement of the pipe is 39.3 mm, which produces 0.275% declination of the pipe. The maximum stress value calculated by theoretical calculation formulas is 188.18 MPa, which is much higher than the result calculated by the current codes. The reason is that every effort is calculated independently and simply added in the theoretical methods. Finally, Deformation and strength of the pipes are checked according to relevant Chinese standards. It reveals that the sewage pipe lines are safe in the construction procedure and the results got by numerical simulation are more reasonable than those calculated by theoretical formulas.

Key words: large diameter thin-wall steel pipe, sewage pipe line, numerical simulation, impact assessment

中图分类号: 

  • TU 990.3
[1] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[2] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[3] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[4] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[5] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[6] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[7] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[8] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[9] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[10] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[11] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[12] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[13] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[14] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[15] 李世俊, 马昌慧, 刘应明, 韩玉珍, 张 彬, 张 嘎, . 离心模型试验与数值模拟相结合研究 采空边坡渐进破坏特性[J]. 岩土力学, 2019, 40(4): 1577-1583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 米海珍,王 昊,高 春,朱浩稳. 灰土的浸水强度及残余强度的试验研究[J]. , 2010, 31(9): 2781 -2785 .
[2] 房营光,曹 洪. 地基 结构系统地震响应的突变模型分析[J]. , 2003, 24(5): 729 -732 .
[3] 张志强 ,李 宁 ,陈方方 ,G. Swoboda . 不同分布距离的软弱夹层对洞室稳定性的影响研究[J]. , 2007, 28(7): 1363 -1368 .
[4] 唐 栋 ,李典庆 ,周创兵 ,方国光 . 考虑前期降雨过程的边坡稳定性分析[J]. , 2013, 34(11): 3239 -3248 .
[5] 李 萍 ,李同录 ,王 红, 梁 燕, . 非饱和黄土土-水特征曲线与渗透系数Childs & Collis-Geroge模型预测[J]. , 2013, 34(S2): 184 -189 .
[6] 叶万军,董西好,杨更社,李晓. 倾倒型黄土崩塌稳定性判据及其影响范围研究[J]. , 2013, 34(S2): 242 -246 .
[7] 何历超 ,王梦恕 ,李宇杰 , . 浅埋大跨小间距黄土隧道支护技术研究[J]. , 2013, 34(S2): 306 -310 .
[8] 杨泽飞,魏 纲,林磊磊,张世民. 盾构法隧道施工工后横向地表总沉降研究[J]. , 2013, 34(S2): 338 -343 .
[9] 刘 杰,姚海林,卢 正,胡梦玲,董启朋. 非饱和土路基毛细作用的数值与解析方法研究[J]. , 2013, 34(S2): 421 -427 .
[10] 黄刚海. 基于数值模拟监测值突变特征确定工程参数[J]. , 2013, 34(S2): 439 -442 .