›› 2004, Vol. 25 ›› Issue (1): 1-4.

• 基础理论与实验研究 •    下一篇

单轴压缩下软岩的动态力学特性试验研究

李海波1,王建伟2,李俊如1,周青春1,刘亚群1   

  1. 1.中国科学院武汉岩土力学研究所,湖北 武汉 430071; 2.黄河水利职业技术学院,河南 开封 475001
  • 收稿日期:2003-02-28 出版日期:2004-01-10 发布日期:2014-07-15
  • 作者简介:李海波,男,1969年出生,博士,研究员,主要从事岩土动力学方面的研究工作
  • 基金资助:

    国家自然科学基金(50009008)和国家重点基础发展规划项目(2002CB412705)资助项目

Mechanical properties of soft rock under dynamic uniaxial compression

LI Hai-bo1, WANG Jian-wei2, LI Jun-ru1, ZHOU Qing-chun1, LIU Ya-qun1   

  1. 1.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2.Yellow River conservancy technical institute, Kaifeng 475001, China
  • Received:2003-02-28 Online:2004-01-10 Published:2014-07-15

摘要: 对软岩(砂浆模拟材料)进行了应变速率范围为10-5~101s-1的动单轴压缩实验。实验结果表明,试样的抗压强度随应变速率的增加有较明显的增加趋势,增加幅度大于硬岩;试样的弹性模量以及泊松比随着应变速率的增加均有增加的趋势,但幅度小于强度的增加幅度。并根据不同应变速率下试样破裂面的SEM实验结果,初步地分析了软岩动态力学特性机理。

关键词: 动单轴压缩, 软岩, 力学特性

Abstract: The experimental study on soft rock (analogized with mortar) under dynamic uniaxial compression at the strain rates from 10-5 to 101 s-1 has been carried out. It is indicated that the compressive strength of the soft rock increases with the increasing strain rate; and the rising rates are higher than that of hard rock. The Young’s modulus and Poisson’s ratio of the soft rock increase with the increasing strain rate, but the rising rates are less than that of compressive strength. In addition, based on the SEM results, the mechanism of the strain rate effect of the soft rock is primarily analyzed.

Key words: dynamic uniaxial compression, soft rock, mechanical properties

中图分类号: 

  • TU 458.+4
[1] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[2] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
[3] 孙广臣, 谢佳佑, 何 山, 傅鹤林, 江学良, 郑 亮, . 不同方向地震激励下软岩桥隧 搭接段动力响应研究[J]. 岩土力学, 2019, 40(3): 893-902.
[4] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[5] 陈卫忠, 李翻翻, 马永尚, 雷 江, 于洪丹, 邢天海, 郑有雷, 贾晓东, . 并联型软岩温度-渗流-应力耦合三轴流变仪的研制[J]. 岩土力学, 2019, 40(3): 1213-1220.
[6] 王家全, 张亮亮, 赖 毅, 陆梦梁, 叶 斌, . 加筋土挡墙静动力学特性大模型试验研究[J]. 岩土力学, 2019, 40(2): 497-505.
[7] 朱振南, 田 红, 董楠楠, 窦 斌, 陈 劲, 张 宇, 王炳红, . 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(S2): 169-176.
[8] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
[9] 陈子全,何 川,董唯杰,马杲宇,潘旭勇,裴成元,. 北疆侏罗系与白垩系泥质砂岩物理力学特性对比分析及其能量损伤演化机制研究[J]. , 2018, 39(8): 2873-2885.
[10] 刘 镇,周翠英,陆仪启,林振镇, . 软岩水-力耦合的流变损伤多尺度力学试验系统的研制[J]. , 2018, 39(8): 3077-3086.
[11] 陈合龙,韦昌富,田慧会,魏厚振,. 气饱和含CO2水合物砂的三轴压缩试验[J]. , 2018, 39(7): 2395-2402.
[12] 费 康,钱 健,洪 伟,刘汉龙,. 黏土地基中能量桩力学特性数值分析[J]. , 2018, 39(7): 2651-2661.
[13] 许宏发,柏 准,齐亮亮,耿汉生,马林建,刘 斌, . 基于全应力-应变曲线的软岩蠕变寿命估计[J]. , 2018, 39(6): 1973-1980.
[14] 李志刚,徐光黎,黄 鹏,赵 欣,伏永朋,苏 昌,. 粉砂质板岩力学特性及各向异性特性[J]. , 2018, 39(5): 1737-1746.
[15] 汤积仁,卢义玉,陈钰婷,张欣玮,敖 翔,贾云中,李 倩,. 超临界CO2作用下页岩力学特性损伤的试验研究[J]. , 2018, 39(3): 797-802.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,冯 兴,黄 祥,李春亮. UH模型在有限元分析中的应用[J]. , 2010, 31(1): 237 -245 .
[2] 郭印同,杨春和. 硬石膏常规三轴压缩下强度和变形特性的试验研究[J]. , 2010, 31(6): 1776 -1780 .
[3] 马 强,郑俊杰,张 军,赵冬安. 高填方涵洞减载机制与数值分析[J]. , 2010, 31(S1): 424 -429 .
[4] 刘新荣,钟祖良,张永兴,王吉明. 以塑性功为硬化参数的Q2原状黄土弹塑性模拟[J]. , 2009, 30(5): 1215 -1220 .
[5] 蔡可键. 水平谐振荷载作用下桥梁基桩的动力反应[J]. , 2009, 30(5): 1504 -1508 .
[6] 王国粹,杨 敏. 砂土中水平受荷桩非线性分析[J]. , 2011, 32(S2): 261 -267 .
[7] 何富连,严 红,杨绿刚,杨洪增,李 琦. 淋水碎裂顶板煤巷锚固试验研究与实践[J]. , 2011, 32(9): 2591 -2595 .
[8] 周建武 ,楼晓明. 软黏土中预钻孔沉桩引起的土体隆起分析[J]. , 2011, 32(9): 2839 -2844 .
[9] 陈国良 ,张勇慧 ,盛 谦 ,刘修国. 基于地理信息系统的公路边坡三维建模及可视化研究[J]. , 2011, 32(11): 3393 -3398 .
[10] 耿雪玉 ,于 洁 . 交通荷载下横观各向同性土的Biot固结分析[J]. , 2012, 33(5): 1366 -1374 .