›› 2004, Vol. 25 ›› Issue (2): 189-193.

• 基础理论与实验研究 • 上一篇    下一篇

混凝土大坝冻融破坏问题的数值计算分析

李守巨1,刘迎曦1,陈昌林2,李正国2   

  1. 1.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024; 2.丰满发电厂,吉林 吉林 132108
  • 收稿日期:2002-09-02 出版日期:2004-02-10 发布日期:2014-07-15
  • 作者简介:李守巨,男,1960年生,副教授,博士,从事岩土力学及水工结构研究
  • 基金资助:

    国家自然科学基金(No. 10072014)

Numerical computation and analysis of fracturing problems of concrete dam owing to freezing and thawing

LI Shou-ju1, LIU Ying-xi1, CHEN Chang-lin2, LI Zheng-guo2   

  1. 1. State Key Laboratory of Structural Analysis of Industry Equipment, Dalian University of Technology, Dalian 116024, China; 2. Fengman Hydropower Plant, Jilin 132108, China
  • Received:2002-09-02 Online:2004-02-10 Published:2014-07-15

摘要: 根据大坝上游水库水温和气温观测资料,建立了大坝上游水库水温和当地气温的回归模型。采用有限元数值计算方法,分析了混凝土大坝的温度场,研究了混凝土大坝由于气温变化引起的应力场交替变化。研究表明,由于气温随季节的交替变化,大坝下游面浅层的最大主应力远大于混凝土的抗拉强度,进而导致混凝土大坝下游面的冻融老化甚至破坏。计算结果表明,有限元数值模拟结果与现场勘查结果基本一致。

关键词: 混凝土大坝, 冻融, 热应力, 加固

Abstract: Based on the measuring water temperatures and weather temperatures, the regression models of water temperatures and weather temperatures in different seasons were proposed. By making use of finite element method, the temperature fields of concrete dam in different seasons were investigated, and then the changes of stress fields of concrete dam were analyzed because the weather temperature changes seriously with seasons in the cold regions. The research shows that the first principal stress of concrete dam near downstream surface can be over the tensile strength of concrete, and bring about freezing and thawing deterioration in concrete dam. The numerically computational results demonstrate that the simulating values with finite element method can approach to in-situ prospecting values.

Key words: concrete dam, freezing and thawing, thermostress, reinforcing construction

中图分类号: 

  • TU 528
[1] 张 伟, 曲占庆, 郭天魁, 孙 江. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008.
[2] 高 峰, 熊 信, 周科平, 李杰林, 史文超, . 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(3): 926-932.
[3] 胡田飞, 刘建坤, 王天亮, 岳祖润, . 粉质黏土变形特性的冻融循环效应及其双屈 服面本构模型[J]. 岩土力学, 2019, 40(3): 987-997.
[4] 姜德义, 张水林, 陈 结, 杨 涛, 王小书, 谢凯楠, 蒋 翔, . 砂岩循环冻融损伤的低场核磁共振与 声发射概率密度研究[J]. 岩土力学, 2019, 40(2): 436-444.
[5] 俞 缙, 张 欣, 蔡燕燕, 刘士雨, 涂兵雄, 傅国锋, . 水化学与冻融循环共同作用下砂岩细观损伤 与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455-464.
[6] 郑广辉, 许金余, 王 鹏, 方新宇, 王佩玺, 闻 名, . 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学, 2019, 40(2): 632-641.
[7] 费 康, 戴 迪, 洪 伟, . 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80.
[8] 程 桦, 彭世龙, 荣传新, 孙泽辉, . 千米深井L型钻孔预注浆加固硐室围岩 数值模拟及工程应用[J]. 岩土力学, 2018, 39(S2): 274-284.
[9] 汪恩良,姜海强,韩红卫,解 飞,崔恩彤,. 冻融模型相似性分析及试验验证[J]. , 2018, 39(S1): 333-340.
[10] 张玉芳,袁 坤,. 双锚固段新型锚索锚固性能研究及工程应用[J]. , 2018, 39(S1): 461-468.
[11] 丑亚玲,郏书胜,张庆海,曹 伟,盛 煜,. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. , 2018, 39(8): 2715-2722.
[12] 高 樯,温 智,王大雁,牛富俊,谢艳丽,苟廷韬,. 基于冻融交界面直剪试验的冻土斜坡失稳过程研究[J]. , 2018, 39(8): 2814-2822.
[13] 曾志雄,孔令伟,李晶晶,李聚昭, . 干湿-冻融循环下延吉膨胀岩的力学特性及其应力-应变归一化[J]. , 2018, 39(8): 2895-2904.
[14] 叶万军,李长清,杨更社,刘忠祥,彭瑞奇. 冻融环境下黄土体结构损伤的尺度效应[J]. , 2018, 39(7): 2336-2343.
[15] 王 鹏,许金余,方新宇,王佩玺,刘少赫,王浩宇,. 红砂岩吸水软化及冻融循环力学特性劣化[J]. , 2018, 39(6): 2065-2072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[2] 赵洪宝,尹光志,李小双. 烧变后粗砂岩抗拉特性试验研究[J]. , 2010, 31(4): 1143 -1146 .
[3] 徐兴华,尚岳全,王迎超. 滑坡灾害综合评判决策系统研究[J]. , 2010, 31(10): 3157 -3164 .
[4] 王新志,汪 稔,孟庆山,刘晓鹏. 钙质砂室内载荷试验研究[J]. , 2009, 30(1): 147 -151 .
[5] 何思明,吴 永,李新坡. 嵌岩抗拔桩作用机制研究[J]. , 2009, 30(2): 333 -337 .
[6] 颜可珍,刘能源,夏唐代. 基于判别分析法的地震砂土液化预测研究[J]. , 2009, 30(7): 2049 -2052 .
[7] 陈智强,张永兴,周检英. 基于数字散斑技术的深埋隧道围岩岩爆倾向相似材料试验研究[J]. , 2011, 32(S1): 141 -148 .
[8] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[9] 魏厚振,颜荣涛,陈 盼,田慧会,吴二林,韦昌富. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. , 2011, 32(S2): 198 -203 .
[10] 巩思园,窦林名,何 江,贺 虎,陆菜平,牟宗龙. 深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J]. , 2012, 33(1): 41 -47 .