›› 2014, Vol. 35 ›› Issue (4): 1101-1109.

• 岩土工程研究 • 上一篇    下一篇

深埋隧道地质构造发育段围岩压力的特点

刘成禹1,何满潮2   

  1. 1. 福州大学 环境与资源学院,福州 350108;2. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083
  • 收稿日期:2013-07-01 出版日期:2014-04-10 发布日期:2014-04-18
  • 作者简介:刘成禹,男,1970年生,博士,副教授,主要从事工程地质、隧道与地下工程方面的研究工作
  • 基金资助:

    国家自然科学基金资助项目(No. 41272300);中铁隧道集团有限公司科技创新计划项目(No. 2007-19)

Characteristics of surrounding rock pressure of deep tunnel in segment of geological structure development

LIU Cheng-yu1,HE Man-chao2   

  1. 1. College of Environment and Resources, Fuzhou University, Fuzhou 350108, China; 2. School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China
  • Received:2013-07-01 Online:2014-04-10 Published:2014-04-18

摘要: 以龙厦铁路象山特长隧道地质构造发育、埋深大于500 m段围岩压力及围岩变形的现场测试资料为依据,对大埋深隧道地质构造发育段围岩压力的特点、变形压力的形成机制等进行了研究。研究表明:大埋深隧道,结构面或褶曲、逆断层发育,但地下水不发育的地段,即使围岩强度较高,隧道开挖后仍可能出现较大的变形;围岩较大变形主要是由于在自重应力和残余构造应力作用下被挤密的结构面在隧道开挖后因侧向限制消除而张开、扩容引起的,受其影响,初期支护将受到较大的围岩变形压力。上述地段围岩压力具有下列特点:(1)地下水不发育区段的围岩压力比地下水发育区段的大;(2)隧道纵向发育向斜的区段,拱顶至拱腰段围岩压力最大,越趋向于向斜核部,拱顶围岩压力越大;(3)发育褶曲的断面,与褶曲轴线垂直方向的围岩压力较大;(4)发育逆断层的断面,与断层倾向相反侧的围岩压力较大,该侧断层面附近的围岩压力最大,对侧断层面附近的围岩压力最小;(5)下台阶的围岩压力比上台阶的小,两者的相对差随上、下台阶施工间隔时间的延长而增大。

关键词: 深埋隧道, 地质构造, 围岩压力, 围岩变形

Abstract: Based on the measured data of surrounding rock pressure and deformation in the segment of Longxia Railway at Xiangshan extra-long tunnel that is buried deeper than 500 m with high development of geological structure, studied the characteristics of surrounding rock pressure, formation mechanism of the deformation pressure, etc., in the segment of the deep tunnel with high development of geological structure are studied. The research shows that: in the deep segment of tunnel, large deformations happen in the sections with lots of structure planes, folds, reversed faults and little ground water, after the excavation, even though the surrounding rock strength is higher. The larger surrounding rock deformation is contributed by the opening and volumetric dilatancy of the structural planes, which are compacted by the self-weight stress and residual tectonic stress, as the lateral confinement is eliminated after the excavation. For that, great deformational pressure from the surrounding rock may be exerted to the primary support. The surrounding rock pressure in the above segment has the following characteristics: (1) The surrounding rock pressure is greater in the sections with little ground water than the sections with a lot. (2) The surrounding rock pressure largest on the arch crown to the hance in the sections with syncline that developed in the tunnel longitudinal, the nearer to the core of the syncline, the greater the pressure. (3) In the sections developed with folds, the surrounding rock pressure is larger in the direction perpendicular to the fold axis. (4) In the sections developed with reversed fault, the surrounding rock pressure is larger in the side that opposite the fault dip; and the surrounding rock pressure in the position of fault surface is largest in this side, smallest in the other side. (5) The surrounding rock pressure on the lower bench is smaller than that on the upper bench, the longer the time between the excavations, the greater the difference between the pressure.

Key words: deep tunnel, geological structure, surrounding rock pressure, surrounding rock deformation

中图分类号: 

  • U 45
[1] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[2] 孙明社,马 涛,申志军,吴 旭,王梦恕,. 复合式衬砌结构中衬砌分担围岩压力比例的研究[J]. , 2018, 39(S1): 437-445.
[3] 侯公羽,李小瑞,梁洪垚,梁金平,周蒙辉,崔永科,. 高强石膏材料配比研究及其在围岩试件(厚壁圆筒) 开挖卸荷试验中的应用[J]. , 2018, 39(S1): 159-166.
[4] 张治国,徐晓洋,赵其华,. 水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析[J]. , 2016, 37(S2): 16-24.
[5] 程建龙,杨圣奇,潘玉丛,田文岭,赵维生,. 挤压地层双护盾TBM围岩变形及应力场特征研究[J]. , 2016, 37(S1): 371-380.
[6] 周 浩 ,肖 明 ,陈俊涛 , . 大型地下洞室全长黏结式岩石锚杆锚固机制研究及锚固效应分析[J]. , 2016, 37(5): 1503-1511.
[7] 程建龙,杨圣奇,李学华,潘玉丛,赵维生,田文岭,. 位移释放率对双护盾TBM护盾压力的影响研究[J]. , 2016, 37(5): 1399-1407.
[8] 刘仰鹏,贺少辉,汪大海,李丹煜. 超大跨度深埋地下结构围岩压力计算研究[J]. , 2015, 36(S2): 118-124.
[9] 高 魁 ,刘泽功 ,刘 健 , . 基于相似模拟和地质力学模型试验的突出装置研制及应用[J]. , 2015, 36(3): 711-718.
[10] 周 辉 ,胡善超 ,卢景景 ,王竹春 ,张传庆 ,渠成堃 ,李 震,. 煤矿深井巷道掘进全过程围岩变形破坏原位测试[J]. , 2015, 36(12): 3523-3530.
[11] 张俊儒 ,孙克国 ,卢 锋 ,郑宗溪 ,孙其清,. 不等跨连拱铁路隧道围岩压力分布及受力特征模型试验研究[J]. , 2015, 36(11): 3077-3084.
[12] 王志伟 ,乔春生 ,宋超业,. 上软下硬岩质地层浅埋大跨隧道松动压力计算[J]. , 2014, 35(8): 2342-2352.
[13] 崔 岚,郑俊杰,章荣军,张 威. 弹塑性软化模型下隧洞围岩变形与支护压力分析[J]. , 2014, 35(3): 717-722.
[14] 罗 忆 ,李新平 ,徐鹏程 ,董 千 ,洪吉松 , . 考虑累积损伤效应的围岩变形特性研究[J]. , 2014, 35(11): 3041-2048.
[15] 何本国 ,朱永全 ,孙明磊 ,张志强 ,孙元国 . 高速铁路膏溶角砾岩深埋隧道支护荷载确定方法[J]. , 2013, 34(3): 827-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[5] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[6] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[7] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[8] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[9] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[10] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .