›› 2014, Vol. 35 ›› Issue (S1): 233-237.

• 基础理论与实验研究 • 上一篇    下一篇

改进的Maksimovic峰值剪切强度准则的试验验证

唐志成1, 2,刘泉声1,黄继辉2,刘小燕1   

  1. 1. 武汉大学 土木建筑工程学院,武汉 430072;2. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2013-10-20 出版日期:2014-06-10 发布日期:2014-06-20
  • 作者简介:唐志成,男,1983年生,博士,主要从事岩石节理的力学性质、高地应力下软弱围岩“锚注”机理等方面的研究工作。
  • 基金资助:

    国家自然科学基金资助(No. 41130742);国家重点基础研究发展计划(973项目)资助(No. 2014CB046904);湖北省自然科学基金重点项目(创新群体)资助(No. 2011CDA119)。

Experimental validation of modified Maksimovic peak shear strength criterion for rock fractures

TANG Zhi-cheng1, 2, LIU Quan-sheng1, HUANG Ji-hui2, LIU Xiao-yan1   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2013-10-20 Online:2014-06-10 Published:2014-06-20

摘要: Maksimovic峰值剪切强度准则形式简洁,参数的物理含义明确,但由于反映节理粗糙程度的特征量“粗糙度角 ”须由试验值确定,因此不可用于估算岩石节理的峰值剪切强度。改进的Maksimovic峰值剪切强度准则在继承原准则优点的基础上,采用定量化的三维形貌参数表示节理的“粗糙度角 ”。采用岩石节理的直剪切试验数据对改进的Maksimovic峰值剪切强度准则进行了试验验证,计算值与试验值具有很好的相关性,表明可以采用该准则估算岩石节理的峰值剪切强度。

关键词: 岩石力学, 节理, 峰值剪切强度, 直剪试验, 三维形貌参数

Abstract: The original Maksimovic peak shear strength criterion, has a concise form and clear physical meaning of the used parameters; but it cannot be used as a predictive tool to assess the peak shear strength of rock joints, because the roughness angle , which reflected the roughness of joint surface, is determined by back analysis according to the experimental results. The modified one inherits all the merits of the original criterion and the roughness angle is determined by a quantified roughness metric. In the current study, the modified Maksimovic criterion is validated using experimental data of rock joints. The good agreement between the calculated values and the measured ones indicates that the modified one has the ability to evaluate the peak shear strength for rock joints.

Key words: rock mechanics, joint, peak shear strength, direct shear test, three-dimensional morphology parameter

中图分类号: 

  • TU 452
[1] 王培涛, 黄正均, 任奋华, 章亮, 蔡美峰, . 基于3D打印的含复杂节理岩石直剪特性 及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56.
[2] 夏才初, 喻强锋, 钱 鑫, 桂 洋, 庄小清. 常法向刚度条件下岩石节理剪切−渗 流特性试验研究[J]. 岩土力学, 2020, 41(1): 57-66.
[3] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[4] 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366.
[5] 大久保诚介, 汤 杨, 许江, 彭守建, 陈灿灿, 严召松, . 3D-DIC系统在岩石力学试验中的应用[J]. 岩土力学, 2019, 40(8): 3263-3273.
[6] 张艳博, 梁鹏, 孙林, 田宝柱, 姚旭龙, 刘祥鑫, . 单轴压缩下饱水花岗岩破裂过程声发射 频谱特征试验研究[J]. 岩土力学, 2019, 40(7): 2497-2506.
[7] 马秋峰, 秦跃平, 周天白, 杨小彬. 多孔隙岩石加卸载力学特性及本构模型研究[J]. 岩土力学, 2019, 40(7): 2673-2685.
[8] 田军, 卢高明, 冯夏庭, 李元辉, 张希巍. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074.
[9] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[10] 李文轩, 卞士海, 李国英, 吴俊杰, . 粗粒料接触面模型及其在土石坝工程中的应用[J]. 岩土力学, 2019, 40(6): 2379-2388.
[11] 陈国庆, 唐 鹏, 李光明, 张广泽, 王 栋, . 岩桥直剪试验声发射频谱特征及主破裂前兆分析[J]. 岩土力学, 2019, 40(5): 1649-1656.
[12] 苏国韶, 燕思周, 闫召富, 翟少彬, 燕柳斌, . 真三轴加载条件下岩爆过程的声发射演化特征[J]. 岩土力学, 2019, 40(5): 1673-1682.
[13] 王 宇, 艾 芊, 李建林, 邓华锋, . 考虑不同影响因素的砂岩损伤特征 及其卸荷破坏细观特性研究[J]. 岩土力学, 2019, 40(4): 1341-1350.
[14] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[15] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[2] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[5] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[6] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[7] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[8] 徐维生,柴军瑞,陈兴周,孙旭曙. 岩体裂隙网络非线性非立方渗流研究与应用[J]. , 2009, 30(S1): 53 -57 .
[9] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[10] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .