›› 2014, Vol. 35 ›› Issue (S1): 431-436.

• 数值分析 • 上一篇    下一篇

软土基坑中内插H型钢重力式挡土墙支护的变形及稳定性的有限元研究

侯景军1, 2,何 俊2,汤正俊1,刘俊新3,谭万元4   

  1. 1. 武汉大学 土木建筑工程学院,武汉 430072;2. 湖北工业大学 土木工程与建筑学院,武汉 430068; 3. 西南科技大学 土木工程与建筑学院,四川 绵阳 621010;4. 信息产业第十一设计研究院科技工程股份有限公司,成都 610021
  • 收稿日期:2014-01-26 出版日期:2014-06-10 发布日期:2014-06-20
  • 作者简介:侯景军,男,1980年生,博士研究生,讲师,主要从事岩土工程技术研究
  • 基金资助:

    国家自然科学基金资助(No. 51008120)。

Application of gravity retaining wall with H-shaped steel in soft soil foundation pit

HOU Jing-jun1,2,HE Jun2,TANG Zheng-jun1,LIU Jun-xin3,TAN Wan-yuan4   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan 430071, China; 3. School of Civil Engineering and Architecture,Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; 4. The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation Limited, Chengdu 610021, China
  • Received:2014-01-26 Online:2014-06-10 Published:2014-06-20

摘要: 基于硬化土模型(HS模型),利用PLAXIS有限元分析软件对上海地区某软土浅基坑中内插H型钢的重力式挡土墙支护开展有限元分析,根据数值试验结果和监测数据对基坑变形和稳定性进行研究。研究发现,(1)内插H型钢重力坝围护在浅基坑局部开挖7~8 m范围内有着较好的可行性和工程效果,在浅基坑支护中可作为重力式围护的补充手段;(2)使用PLAXIS的HS硬化土模型模拟基坑开挖具有较好的精度和与实际情况较接近的结果,HS模型的参数可以根据工程经验进行取值;(3)实际基坑监测结果表明浅基坑的局部深坑处的内插H型钢重力坝在两端重力坝的约束下其位移发展受到一定控制,可显著提高基坑的整体稳定性,且内插H型钢可以增加围护体本身的刚度,可抵抗部分土压力弯矩,一定程度上控制了围护体的位移;(4)实际工程中对内插H型钢重力坝的局部开挖深度要谨慎选择,首先在周边环境保护条件较为宽松的条件下采用,局部深坑深度建议在7~8 m之间,并且基坑整体开挖深度建议在5~6 m之间。通过对软土浅基坑中内插H型钢的重力式挡土墙支护的研究,能对相关基坑支护工程提供更可靠的技术支持。

关键词: 软土基坑, 水泥土搅拌桩, 重力式挡土墙, 变形与稳定性, 内插H型钢, PLAXIS软件

Abstract: Based on the hardening-soil model, finile element analyzing method was carried out on supporting system of gravity retaining wall with embedded H-shaped steel through PLAXIS FEM software; and researches was conducted on the deformation and stability of the support system with the simulation results and on-site monitoring data. Researches show that (1) Gravity retaining wall with H-shaped steel shows good feasibility and engineering functions in the range of 7-8 m of local excavation of shallow foundation pit, which can be the supplementary means of gravity-style enclosure. (2) Good precision and results close to actual situations can be obtained by hardening-soil model(HS model for short) embedded in PLAXIS FEM software to simulate the foundation pit, and parameters of HS model can be obtained according to engineering experience. (3) On-site monitoring data of foundation pit shows that the displacement development of gravity retaining wall with H-shaped steel was controlled under the restriction of retaining wall on both ends, which is good for global stability; and that H-shaped steel can well improve the stiffness of supporting system and resist some of bending moment produced by soil mechanics, which to some extent controlled the support system’s displacement. (4) In actual engineering local excavating depth of gravity retaining wall with H-shaped steel should be carefully chosen, which is advisably used under the condition of loose requirement for surroundings’ protection, with a advisable excavating depth of 7-8 m in local foundation excavation and the global excavating depth of 5-6 m. Through the research of gravity retaining wall support with H-shaped steel in shallow foundation pit in soft soil area, more reliable technique supports can be offered for relevant supporting engineering of foundations.

Key words: cement-soil mixing pile, gravity retaining wall, soft soil foundation pit, deformation and stability, H-shaped steel, PLAXIS software

中图分类号: 

  • TU 443
[1] 陈祖煜,黎康平,李 旭,詹成明,. 重力式挡土墙抗滑稳定容许安全系数取值标准初探[J]. , 2018, 39(1): 1-10.
[2] 胡秀青,董全杨,吕程伟,王 军,庄心善,. 水泥土搅拌桩软土地基土体动力特性的共振柱试验研究[J]. , 2016, 37(S2): 343-348.
[3] 陈祖煜 ,詹成明 ,姚海林 ,陈立宏 ,李 旭,. 重力式挡土墙抗滑稳定分析安全判据和标准[J]. , 2016, 37(8): 2129-2137.
[4] 秦 康 ,卢萌盟 ,蒋斌松 , . 砂井联合水泥土搅拌桩复合地基固结解析解[J]. , 2014, 35(S2): 223-231.
[5] 王桂林 ,赵 飞 ,张永兴,. 重力式挡土墙地震旋转位移下的屈服加速度[J]. , 2013, 34(6): 1579-1585.
[6] 赵安平 ,冯 春 ,李世海 ,艾 畅 ,刘 洋. 地震力作用下基覆边坡模型试验研究[J]. , 2012, 33(2): 515-523.
[7] 向 玮,刘松玉,经 绯,刘志彬. 深长变径搅拌桩荷载传递规律的试验研究[J]. , 2010, 31(9): 2765-2771.
[8] 张伟丽,蔡 健,林奕禧,黄良机. 垫层对水泥土搅拌桩复合地基沉降的影响研究[J]. , 2010, 31(12): 4027-4032.
[9] 张勇慧,李红旭,盛 谦,邬 凯,李志勇,岳志平. 基于表面位移的公路滑坡监测预警研究[J]. , 2010, 31(11): 3671-3677.
[10] 邓永锋,刘松玉,洪振舜. 水泥土搅拌桩施工扰动评价的一种方法[J]. , 2009, 30(3): 717-720.
[11] 刘志彬 ,刘松玉 ,经 绯 ,曹德洪,. 水泥土搅拌桩桩身质量的电阻率分析[J]. , 2008, 29(S1): 625-630.
[12] 黄广龙 ,惠 刚 ,梅国雄 ,郑东明 . 沉降控制复合地基设计与测试研究[J]. , 2008, 29(4): 911-915.
[13] 杨志华,杨 庆,孔纲强,栾茂田. 水泥土搅拌桩复合地基震动性能时程分析[J]. , 2008, 29(3): 805-810.
[14] 李茂英 ,曾庆军 ,莫海鸿 ,廖建春 . 高速公路拓宽工程沉降控制复合地基优化设计[J]. , 2008, 29(2): 535-540.
[15] 李小青,王朋团,张 剑. 软土基坑周围地表沉陷变形计算分析[J]. , 2007, 28(9): 1879-1882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[2] 刘豆豆,陈卫忠,杨建平,谭贤君,周喜德. 脆性岩石卸围压强度特性试验研究[J]. , 2009, 30(9): 2588 -2594 .
[3] 王桂尧,李 斌,罗 军,付宏渊. 粉土基质吸力的新型量测装置与土-水特征研究[J]. , 2010, 31(11): 3678 -3682 .
[4] 卢应发,陈朱蕾,谢文良,吕志中. 垃圾卫生填埋中的一些岩土工程技术[J]. , 2009, 30(1): 91 -98 .
[5] 王志萍,胡敏云,夏玲涛. 垃圾填土压缩特性的室内试验研究[J]. , 2009, 30(6): 1681 -1686 .
[6] 贾 强,应惠清,张 鑫. 锚杆静压桩技术在既有建筑物增设地下空间中的应用[J]. , 2009, 30(7): 2053 -2057 .
[7] 路军富,王明年,贾媛媛,喻 渝,谭忠盛. 高速铁路大断面黄土隧道二次衬砌施作时机研究[J]. , 2011, 32(3): 843 -848 .
[8] 王成华,安建国. 含扩径桩的群桩基础竖向承载性状数值分析[J]. , 2011, 32(S2): 580 -585 .
[9] 方 焘 ,刘新荣 ,耿大新 ,罗 照 ,纪孝团 ,郑明新 . 大直径变径桩竖向承载特性模型试验研究(I)[J]. , 2012, 33(10): 2947 -2952 .
[10] 胡万雨 ,陈向浩 ,林 江 ,况磊强 . 瀑布沟水电站砾石土心墙初次蓄水期原位钻孔渗流试验研究[J]. , 2013, 34(5): 1259 -1263 .