›› 2004, Vol. 25 ›› Issue (12): 1897-1902.

• 基础理论与实验研究 • 上一篇    下一篇

爆炸波在准饱和砂土中的传播规律

国胜兵1-3,高培正2,潘越峰2,王明洋1, 3,钱七虎3   

  1. 1.中国科学院武汉岩土研究所,湖北 武汉 430071 2.第二炮兵工程设计研究所,北京 100011; 3.解放军理工大学工程兵工程学院,江苏 南京 210007
  • 收稿日期:2003-09-07 出版日期:2004-12-10 发布日期:2014-08-19
  • 作者简介:国胜兵,男,1975年生,博士,主要从事饱和砂土动力特性以及工程防护研究工作。

Explosive wave propagation in quasi-saturated sandy soil

GUO Sheng-bing1-3,GAO Pei-zheng2, PAN Yue-feng2,WANG Ming-yang1,3, QIAN Qi-hu3   

  1. 1.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071,China 2.Engineering Design and Institute of Second Artillery, Beijing 100011, China; 3.Engineering Institute of Engineering Corps, PLAUST, Nanjing 21007,China
  • Received:2003-09-07 Online:2004-12-10 Published:2014-08-19

摘要: 在文献[1]所建立的饱和砂土动力分析模型的基础上,将该模型编制成分析模块并与通用岩土分析软件FLAC接口。模拟分析饱和砂土在爆炸压缩波荷载作用下波的传播特性,分别考虑了准饱和砂土各组分含量等因素对饱和砂土中波传播的影响。数值模拟结果表明,准饱和土中含有的少量气体对爆炸压缩波传播以及饱和砂土动力特性具有重要影响。

关键词: 准饱和砂土, 爆炸压缩波, 数值模拟, FLAC

Abstract: The analytically dynamic model of saturated sandy soil which is proposed by reference literature[1] is programmed and interfaced with the FLAC code. The characteristics of the propagation of stress wave in quasi-saturated sandy soil under explosive loading is simulated and analyzed, and the influence of the content of the phrase of quasi-saturated sandy soil on the propagation of stress wave in quasi -saturated sandy soil are considered. The results of numerical simulating indicate that the little of gas has important role on the propagation of explosive compression waves in quasi -saturated sandy soil and the dynamic characteristics of quasi -saturated sandy soil.

Key words: quasi -saturated sand soil, explosive compress waves, numerical simulating, FLAC

中图分类号: 

  • TU435
[1] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[2] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[3] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[4] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[5] 李世俊, 马昌慧, 刘应明, 韩玉珍, 张 彬, 张 嘎, . 离心模型试验与数值模拟相结合研究 采空边坡渐进破坏特性[J]. 岩土力学, 2019, 40(4): 1577-1583.
[6] 蔡奇鹏, 甘港璐, 吴宏伟, 陈星欣, 肖朝昀, . 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40(3): 1067-1075.
[7] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[8] 杨爱武, 潘亚轩, 曹 宇, 尚英杰, 吴可龙, . 吹填软土低位真空预压室内试验及其数值模拟[J]. 岩土力学, 2019, 40(2): 539-548.
[9] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[10] 陈上元, 赵 菲, 王洪建, 袁广祥, 郭志飚, 杨 军, . 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332-342.
[11] 郑俊杰, 吕思祺, 曹文昭, 景 丹, . 高填方膨胀土作用下刚柔复合桩基 挡墙结构数值模拟[J]. 岩土力学, 2019, 40(1): 395-402.
[12] 李 杨, 佘成学, 朱焕春, . 现场堆石体振动碾压的颗粒流模拟及验证[J]. 岩土力学, 2018, 39(S2): 432-442.
[13] 张治国,张成平,马兵兵,宫剑飞,叶 铜,. 滑坡作用下既有隧道锚索加固的物理模型试验与数值模拟研究[J]. , 2018, 39(S1): 51-60.
[14] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
[15] 欧孝夺,潘 鑫,侯凯文,江 杰,柳子炎,. 广西北部湾人造陆域吹填土电冲击特性研究[J]. , 2018, 39(S1): 348-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[2] 李鸿博,郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. , 2009, 30(11): 3429 -3434 .
[3] 瞿万波,刘新荣,傅晏,秦晓英. 洞桩法大断面群洞交叉隧道初衬数值模拟[J]. , 2009, 30(9): 2799 -2804 .
[4] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. , 2010, 31(4): 1326 -1330 .
[5] 李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究[J]. , 2010, 31(5): 1550 -1554 .
[6] 谈云志,孔令伟,郭爱国,万 智. 压实红黏土水分传输的毛细效应与数值模拟[J]. , 2010, 31(7): 2289 -2294 .
[7] 王生新,陆勇翔,尹亚雄,郭定一. 碎石土湿陷性试验研究[J]. , 2010, 31(8): 2373 -2377 .
[8] 王云岗,熊 凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. , 2010, 31(8): 2619 -2624 .
[9] 龙 照,赵明华,张恩祥,刘峻龙. 锚杆临界锚固长度简化计算方法[J]. , 2010, 31(9): 2991 -2994 .
[10] 杨建平,陈卫忠,戴永浩. 裂隙岩体变形模量尺寸效应研究Ⅰ:有限元法[J]. , 2011, 32(5): 1538 -1545 .