›› 2004, Vol. 25 ›› Issue (12): 1969-1972.

• 基础理论与实验研究 • 上一篇    下一篇

铁山隧道和大垭口隧道的平面弹塑性有限元分析

张玉军1,李治国2   

  1. 1.中国科学院武汉岩土力学研究所 岩土力学重点试验室, 湖北 武汉 430071;2.中铁隧道集团有限公司科研所,河南 洛阳471009
  • 收稿日期:2004-02-17 出版日期:2004-12-10 发布日期:2014-08-19
  • 作者简介:张玉军,男,1956年生,博士,研究员,博士生导师,主要从事岩石力学与数值计算分析研究工作。

2D elastoplastic finite element analysis of stability of surrounding rock-supporting systems of Tieshan Tunnel and Dayakou Tunnel

ZHANG Yu-jun1,LI Zhi-guo2   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Scientific Institute of China Railway Tunneling Group, Luoyang 471009 , China
  • Received:2004-02-17 Online:2004-12-10 Published:2014-08-19

摘要: 对巴彭公路铁山隧道和开万公路大垭口隧道的两个典型剖面的稳定性进行了平面弹塑性有限元计算,分析了围岩中的应力、变形、塑性区以及初期支护和二次衬砌结构的承载能力,得出了相应的认识:(1)在特定的埋深、岩体类别、支护结构及荷载释放比例的条件下,洞室周围有较强的应力集中现象,一定部位及范围内的围岩进入了塑性状态;(2)喷层、二次衬砌及锚杆均在弹性范围内工作,并且有较大的安全储备。

关键词: 隧道, 围岩-支护体系, 平面有限元, 弹塑性分析

Abstract: By using the 2D elastoplastic finite element computations for the stability of two classical sections of Tieshan Tunnel and Dayakou Tunnel, the authors analyse the stresses, displacements and plastic zones in the surrounding rockmasses and the bearing capacities of the initial supports and the second linings; and obtain the relative knowledge: (1) under the special conditions of overburden thicknesses, rockmass types, support structures and loading relaxation ratios, stronger stress concentrations occur at the nearby regions of the tunnel walls, and some parts of the surrounding rockmasses enter plastic states; (2) all the shotcretes, second linings and rock bolts work within the elastic range, and have larger safety reserves.

Key words: tunnel, surrounding rock-supporting system, 2D FEM, elastoplastic analysis

中图分类号: 

  • TU 454
[1] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[2] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[3] 汪大海, 贺少辉, 刘夏冰, 张嘉文, 姚文博. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322.
[4] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[5] 于 正, 杨龙才, 张 勇, 赵 伟, . 考虑地层变异特征一致性的围岩变形不确定性分析[J]. 岩土力学, 2019, 40(5): 1947-1956.
[6] 王凤云, 钱德玲, . 基于统一强度理论深埋圆形隧道围岩的剪胀分析[J]. 岩土力学, 2019, 40(5): 1966-1976.
[7] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[8] 高成路, 李术才, 林春金, 李利平, 周宗青, 刘 聪, 孙尚渠, . 隧道衬砌渗漏水病害模型试验系统的研制及应用[J]. 岩土力学, 2019, 40(4): 1614-1622.
[9] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[10] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[11] 付代光, 周黎明, 肖国强, 王法刚. 滤波频带对TSP预报结果影响分析[J]. 岩土力学, 2018, 39(S2): 315-325.
[12] 刘亚平, 胥新伟, 魏红波, 宋江伟, . 港珠澳大桥深水地基载荷试验技术[J]. 岩土力学, 2018, 39(S2): 480-485.
[13] 张治国,张成平,马兵兵,宫剑飞,叶 铜,. 滑坡作用下既有隧道锚索加固的物理模型试验与数值模拟研究[J]. , 2018, 39(S1): 51-60.
[14] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[15] 熊晓荣,汤 华,廖明进,尹小涛,王东英, . 隧道锚“楔形效应”的室内模型试验研究[J]. , 2018, 39(S1): 181-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[2] 张春会,于永江,赵全胜. 非均匀煤岩渗流-应力弹塑性耦合数学模型及数值模拟[J]. , 2009, 30(9): 2837 -2842 .
[3] 刘俊岩,刘 燕,王海平. 考虑空间协同效应的排桩斜撑支护体系分段拆撑法研究[J]. , 2010, 31(9): 2854 -2860 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 卢 正,姚海林,程 平,吴万平. 非均布列车荷载作用下软土路基的振动分析[J]. , 2010, 31(10): 3286 -3294 .
[6] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[7] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[8] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[9] 宋卫东,王洪永,王 欣,杜建华. 采区溜井卸矿冲击载荷作用的理论分析与验证[J]. , 2011, 32(2): 326 -332 .
[10] 张治国,黄茂松,王卫东. 邻近开挖对既有软土隧道的影响[J]. , 2009, 30(5): 1373 -1380 .