›› 2003, Vol. 24 ›› Issue (1): 127-129.

• 基础理论与实验研究 • 上一篇    下一篇

地下洞室埋深对围岩双重非线性影响的有限元分析

张玉军1, 刘谊平2   

  1. 1. 中国科学院武汉岩土力学研究所重点实验室, 湖北 武汉 430071; 2. 中国科学院武汉物理与数学研究所, 湖北 武汉 430071
  • 收稿日期:2001-11-17 出版日期:2003-02-10 发布日期:2014-08-27
  • 作者简介:张玉军,男,1956年生,博士,教授,主要从事岩体力学与工程方面的研究工作。

Finite element analyses for influence of embedded depth of an underground opening on double-nonlinearity of surrounding rockmass

ZHANG Yu-jun1, LIU Yi-ping2   

  1. 1. Key Laboratory of Rock and soil Mechanics, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China ; 2. Institute of physics and mathematics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2001-11-17 Online:2003-02-10 Published:2014-08-27

摘要: 分别使用小变形和大变形弹塑性有限元方法,对位于不同埋深的地下洞室围岩动态进行了计算,分析了围岩中的塑性区、位移场和应力场。当洞室埋深较小时,岩体双重非线性表现不明显,小变形与大变形方法所得结果相当接近;当洞室埋深较大时,岩体的双重非线性明显呈现而使得两种方法的结果相差较大,此时宜选择用大变形理论。

关键词: 地下洞室, 埋深, 围岩, 双重非线性, 有限元分析

Abstract: The finite-element method with small deformation formulation as well as the large deformation formulation, is used to perform elastoplastic analyses of an underground opening with different embedded depths, and investigate the plastic zones, displacement distributions and secondary stress fields in the surrounding rockmass. It can be seen that when the embedded depth is small the computations obtained from small deformation and large deformation methods are quite close to each other, but when the embedded depth is larger , there exists a distinct difference between the results of the two methods because the double-nonlinearity of surrounding rockmass acts obviously at this time , so for the latter case, the right selection is applying the large deformation theory.

Key words: underground opening, surrounding rockmass, embedded depth, double-nonlinearity, finite element analysis

中图分类号: 

  • TU 457
[1] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[2] 崔 琦, 侯建国, 宋一乐. 抽水蓄能电站地下厂房围岩约束 及结构振动特性分析 [J]. 岩土力学, 2019, 40(2): 809-817.
[3] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[4] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[5] 程 桦, 彭世龙, 荣传新, 孙泽辉, . 千米深井L型钻孔预注浆加固硐室围岩 数值模拟及工程应用[J]. 岩土力学, 2018, 39(S2): 274-284.
[6] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[7] 侯公羽,李小瑞,梁洪垚,梁金平,周蒙辉,崔永科,. 高强石膏材料配比研究及其在围岩试件(厚壁圆筒) 开挖卸荷试验中的应用[J]. , 2018, 39(S1): 159-166.
[8] 孙明社,马 涛,申志军,吴 旭,王梦恕,. 复合式衬砌结构中衬砌分担围岩压力比例的研究[J]. , 2018, 39(S1): 437-445.
[9] 王凤云,钱德玲. 基于切向应变软化的深埋圆形隧道围岩弹塑性分析[J]. , 2018, 39(9): 3313-3320.
[10] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[11] 崔 臻,盛 谦,冷先伦,罗庆姿,. 地下洞室地震动力响应的岩体结构控制效应[J]. , 2018, 39(5): 1811-1824.
[12] 李术才,贺 鹏,李利平,张乾青,石少帅,徐 飞,刘洪亮. 隧道岩质围岩亚级分级可靠度分析方法及其工程应用[J]. , 2018, 39(3): 967-376.
[13] 刘世伟,盛 谦,朱泽奇,龚彦峰,崔 臻,李建贺,张善凯,. 隧道围岩内地下水渗流边界效应影响研究[J]. , 2018, 39(11): 4001-4009.
[14] 胡明明,周 辉,张勇慧,张传庆,高 阳,胡大伟,李 震,. 宽断面预留墩柱沿空留巷墩柱支护阻力计算研究[J]. , 2018, 39(11): 4218-4225.
[15] 何满潮,高玉兵,杨 军,王建文,王亚军,朱 珍, . 厚煤层快速回采切顶卸压无煤柱自成巷工程试验[J]. , 2018, 39(1): 254-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 木林隆,黄茂松,龚维明,殷永高. 水平荷载作用下根式基础受力特性分析[J]. , 2010, 31(1): 287 -292 .
[3] 郝冬雪,陈 榕,栾茂田,武科. SBPT测定饱和黏土不排水强度的数值分析[J]. , 2010, 31(7): 2324 -2328 .
[4] 邹德高,徐 斌,孔宪京. 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. , 2011, 32(3): 797 -803 .
[5] 王 军,杨 芳,吴延平,胡秀青. 初始剪应力与加荷速率共同作用下饱和软黏土孔压模型试验研究[J]. , 2011, 32(S1): 111 -117 .
[6] 张乐文,邱道宏,李术才,张德永. 基于粗糙集和理想点法的隧道围岩分类研究[J]. , 2011, 32(S1): 171 -175 .
[7] 邴 慧 ,何 平. 不同冻结方式下盐渍土水盐重分布规律的试验研究[J]. , 2011, 32(8): 2307 -2312 .
[8] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[9] 丁祖德,彭立敏,施成华. 地铁隧道穿越角度对地表建筑物的影响分析[J]. , 2011, 32(11): 3387 -3392 .
[10] 贾 超,李 朋,张强勇,李术才. 盐岩储气库运营期失效概率分析研究[J]. , 2012, 33(11): 3352 -3358 .