›› 2002, Vol. 23 ›› Issue (6): 706-708.

• 基础理论与实验研究 • 上一篇    下一篇

双层结构堤基渗透变形发展过程的数值模拟

刘建刚,陈建生,焦月宏,赵维炳   

  1. 河海大学 土木工程学院, 江苏 南京 210024
  • 收稿日期:2001-10-25 出版日期:2002-12-10 发布日期:2016-09-04
  • 作者简介:刘建刚,男,1963年生,副教授,岩土工程专业在职博士,从事堤防渗漏及变形的研究。

Numerical simulation of osmotic deformation progress of dyke foundations of double-layer structure

LIU Jian-gang, CHEN Jian-sheng, JIAO Yue-hong, ZHAO Wei-bing   

  1. College of Civil Engineering, Hohai University , Nanjing 210024, China
  • Received:2001-10-25 Online:2002-12-10 Published:2016-09-04

摘要: 通过算例采用分时段稳定流理论模拟了基于临界水力坡降的流砂动态发展过程,建立了双层结构堤基发生流土的完整井流砂和半球形井底流砂物理模型。堤基发生渗透变形而形成的集中渗漏通道,将自涌砂口沿垂直堤轴方向发展,并在平面上自涌砂口到河床不断扩大,在深度上不断加深。通道的规模取决于涌砂口的流量大小和水位高低,尤其在较低水位时通道规模将最大。减压井在降低了井附近水头的同时也加大了水力坡降,从而更易发展渗透变形,因此应特别重视减压井的反滤层设计和施工,以使土体保持在原位而不致发生渗透变形。

关键词: 流砂模型, 临界水力坡降, 渗透变形, 集中渗漏通道

Abstract: A physical model has been established on quick sand of complete wells and at the bottom of semi-spherical wells for dyke foundations of double-layer structure, and the dynamic progress of quick sand based on critical hydraulic gradient is simulated in calculation examples by using the time-division stable flow theory. The concentrated permeation channel resulted from osmotic deformation in the dyke foundation will develop from the sand gushing opening along the vertical axis of the dyke, and keep on expanding in horizontal direction from the opening to the river bed, with increasing depth. The size of the channel depends on the flow and water level at the sand gushing opening, and in particular, maximum channel size is possible at low water level. A relief well can lower the head in its adjacent area, but at the same time increase the hydraulic gradient, thereby making it more likely to develop osmotic deformation. Therefore special attention should be paid to the design and construction of the reversed filter of the relief well, so that the soil body can be kept at the original position without causing osmotic deformation.

Key words: quick sand model, critical hydraulic gradient, osmotic deformation , concentrated permeation channel

中图分类号: 

  • TB 115
[1] 马瑞男, 郭红仙, 程晓辉, 刘景儒, . 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(S2): 217-223.
[2] 袁 涛,蒋中明,刘德谦,熊小虎,. 粗粒土渗透损伤特性试验研究[J]. , 2018, 39(4): 1311-1316.
[3] 杨迎晓,龚晓南,周春平,金兴平,. 钱塘江冲海积粉土渗透破坏试验研究[J]. , 2016, 37(S2): 243-249.
[4] 陈 群,刘 黎,何昌荣,朱分清. 缺级粗粒土管涌类型的判别方法[J]. , 2009, 30(8): 2249-2253.
[5] 张家发,定培中,张 伟,胡智京. 水布垭面板堆石坝垫层料渗透与渗透变形特性试验研究[J]. , 2009, 30(10): 3145-3150.
[6] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154-3158.
[7] 胡 琦,凌道盛,陈仁朋,陈云敏,贾官伟. 粉砂地基深基坑工程土体渗透破坏机理及其影响研究[J]. , 2008, 29(11): 2967-2972.
[8] 夏艳华,白世伟,张 超. 某水利枢纽厂房基坑开挖渗透变形评估[J]. , 2007, 28(11): 2435-2439.
[9] 罗长军 ,胡 峰 ,张磊奇 ,王会午,. 陡坡水库大坝渗透稳定性及渗透变形分析[J]. , 2006, 27(8): 1305-1311.
[10] 钱玉林. 筑堤土防渗性状试验研究[J]. , 2004, 25(5): 824-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 润,闫 玥,闫澍旺,乔春生. 某码头软黏土岸坡破坏机制分析及重建[J]. , 2009, 30(11): 3417 -3422 .
[2] 王先军,陈明祥,常晓林,周 伟,袁子厚. Drucker-Prager系列屈服准则在稳定分析中的应用研究[J]. , 2009, 30(12): 3733 -3738 .
[3] 卢坤林,杨 扬. 非极限主动土压力计算方法初探[J]. , 2010, 31(2): 615 -619 .
[4] 杨永波,刘明贵1,张国华,李 祺. 邻近既有隧道的新建大断面隧道施工参数优化分析[J]. , 2010, 31(4): 1217 -1226 .
[5] 吕 涛,杨球玉,耿学勇,陈立伟,杨立建,李海波. 岩石坚硬程度对核电厂地基-基础地震响应特征的影响分析[J]. , 2010, 31(4): 1319 -1325 .
[6] 张孟喜,林青松,刘飞禹. 循环荷载作用下土工格栅拉伸试验研究[J]. , 2010, 31(7): 2024 -2029 .
[7] 张向东,曹启坤,潘宇. 二灰改良土动力特性试验研究[J]. , 2010, 31(8): 2560 -2564 .
[8] 贾学明,柴贺军,郑颖人. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. , 2010, 31(9): 2695 -2703 .
[9] 徐兴华,尚岳全,王迎超. 滑坡灾害综合评判决策系统研究[J]. , 2010, 31(10): 3157 -3164 .
[10] 王 沛,王晓燕,柴寿喜. 滨海盐渍土的固化方法及固化土的偏应力-应变[J]. , 2010, 31(12): 3939 -3944 .