›› 2014, Vol. 35 ›› Issue (9): 2579-2586.

• 岩土工程研究 • 上一篇    下一篇

天津滨海地区晚新生代地层自然固结与地面沉降研究

杨吉龙1,曹国亮2,李 红1,李 静3,胡云壮1, 胥勤勉1,秦雅飞1,杜 东1,方 成1   

  1. 1. 天津地质矿产研究所,天津 300170;2. 北京大学 工学院 水资源研究中心,北京 100817;3. 中国地质大学(武汉)环境学院,武汉 430074
  • 收稿日期:2013-05-13 出版日期:2014-09-10 发布日期:2014-09-16
  • 作者简介:杨吉龙,男,1980年生,硕士,助理研究员,主要从事水文地质和工程地质研究工作。
  • 基金资助:

    中国地质调查局项目(No. 1212011120170,No. 1212011120089)资助

Study of natural consolidation of Late Cenozoic era clay and land subsidence in Tianjin coastal area

YANG Ji-long1,CAO Guo-liang2,LI Hong1,LI Jing3,HU Yun-zhuang1, XU Qin-mian1,QIN Ya-fei1, DU Dong1,FANG Cheng1   

  1. 1. Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China; 2. Center for Water Research, College of Engineering,Peking University, Beijing 100871, China; 3. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
  • Received:2013-05-13 Online:2014-09-10 Published:2014-09-16

摘要: 天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。

关键词: 晚新生代, 地面沉降, 黏性土固结特征, 欠固结黏性土压缩

Abstract: Tianjin coastal area (TCA), located at the coastal region on the west of the Bohai Gulf, has suffered severe land subsidence due to compaction of the huge thick unconsolidated sediments deposited since Late Cenozoic era. Several factors, including groundwater level decline, clayey soils natural consolidation and surface loading rapid increase are the primary causes of land subsidence in this region. A borehole with depth of 1 226 m is drilled at Tanggu in the TCA; and core samples are extracted at various depths. Through laboratory test of these undisturbed soil samples, the physical and mechanicanl properties and the engineering geological properties of all kinds of clayey soils are analyzed. Integrating estimation of total compaction of the under-consolidated clayey soils, the spatial characteristics of natural consolidation of the unconsolidated sediment layers are delineated; and the relation between consolidation characteristics and land subsidence is discussed. The results indicate distinct compaction characteristics of soil layers at different depths: clayey soils in depth less than 100 m show the states of low natural density, high porosity ratio, high moisture content and high compressibility of under-consolidated soft soil; clayey soils in depth of 100-550 m are in the states of over-consolidation or slightly over-consolidation, which is caused by long-term over-exploitation of groundwater in the past; clayey soils with depth greater than 550 m show the state of normal consolidation and include under-consolidated clayey soils interlayers. The total thickness of under-consolidated clayey soils in the borehoe core is about 218 m. These under-consolidated clayey layers are predicted to bring about cumulative compaction of 1 985 mm in a period of several decades to a century. The first and sixth aquifer groups are the primary contributors to this compaction, with predicted compaction of 614 mm and 665 mm respectively.

Key words: Late Cenozoic era, land subsidence, clayey soils consolidation characteristics, compaction of under-consolidated clayey soils

中图分类号: 

  • TU 432
[1] 罗 跃,叶淑君,吴吉春,. 三维区域地面沉降数值模拟[J]. , 2018, 39(3): 1063-1070.
[2] 杨建民,霍王文,. 线状和面状群井抽水导致场外地面沉降呈s-lnr线性关系[J]. , 2018, 39(10): 3565-3572.
[3] 杨吉龙,袁海帆,胡云壮,胥勤勉,施佩歆,陈永胜,. 天津滨海地区深部黏土层弹塑性变形特征与地面沉降关系研究[J]. , 2018, 39(10): 3763-3772.
[4] 崔庆龙 ,沈水龙 ,吴怀娜 ,许烨霜 , . 广州岩溶地区深基坑开挖对周围环境影响的研究[J]. , 2015, 36(S1): 553-557.
[5] 王启耀 ,彭建兵 ,蒋臻蔚 ,滕宏泉,. 西安典型段地面沉降分层标观测及数值模拟[J]. , 2014, 35(11): 3298-3302.
[6] 徐玉龙 ,杨春和 ,李银平 ,施锡林 ,孔君凤 ,李浩然,. 基于改进的Mogi模型对樟树盐矿采空区地面沉降的分析[J]. , 2014, 35(10): 2894-2900.
[7] 林存刚 吴世明 张忠苗 刘俊伟 李宗梁 . 盾构掘进速度及非正常停机对地面沉降的影响[J]. , 2012, 33(8): 2472-2482.
[8] 许烨霜,马 磊,沈水龙. 上海市城市化进程引起的地面沉降因素分析[J]. , 2011, 32(S1): 578-0582.
[9] 魏 纲,陈伟军,魏新江. 双圆盾构隧道施工引起的地面沉降预测[J]. , 2011, 32(4): 991-0996.
[10] 黎永索 ,张可能 ,黄常波 ,李 钟 ,邓美龙. 管幕预筑隧道地表沉降分析[J]. , 2011, 32(12): 3701-3707.
[11] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317-321.
[12] 丁 智 ,魏新江 ,魏 纲 ,陈伟军. 邻近建筑物盾构施工地面沉降数值分析[J]. , 2009, 30(S2): 550-554.
[13] 黄雅虹,吕悦军,周 毅,赵建涛,史丙新. 北京亦庄轻轨工程场地水位下降引起地面沉降量的评估方法探讨[J]. , 2009, 30(8): 2457-2462.
[14] 魏 纲,裘新谷,魏新江,丁 智. 邻近建筑物的暗挖隧道施工数值模拟[J]. , 2009, 30(2): 547-552.
[15] 张 勇 ,赵云云 . 基坑降水引起地面沉降的实时预测[J]. , 2008, 29(6): 1593-1596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[2] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[3] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[9] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[10] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .