›› 2014, Vol. 35 ›› Issue (9): 2623-2633.

• 岩土工程研究 • 上一篇    下一篇

神华碳封存示范项目中CO2注入分布模拟

匡冬琴1,李 琦1,王永胜2,王秀杰3,林 青4,魏晓琛1,宋然然1   

  1. 1.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;2.中国神华煤制油化工有限公司,北京 100011; 3.中国石油吉林油田公司,吉林 松原 138000;4.中国石油大学(北京) 石油工程学院,北京 100011
  • 收稿日期:2013-12-02 出版日期:2014-09-10 发布日期:2014-09-16
  • 通讯作者: 李琦,男,1972年生,博士,研究员,主要从事酸气回注、CO2地质利用与封存方面的研究工作。E-mail: qli@whrsm.ac.cn E-mail:kuangdq1230@163.com
  • 作者简介:匡冬琴,女,1985年生,硕士,助理研究员,主要从事CO2地质封存方面的研究工作。
  • 基金资助:

    国家自然科学基金面上项目(No. 41274111);国土资源部公益性行业科研专项(No. 201211063-4-1);中澳CO2地质封存项目(CAGS)

Numerical simulation of distribution of migration of CO2 in Shenhua carbon capture and storage demonstration project

KUANG Dong-qin1, LI Qi1, WANG Yong-sheng2, WANG Xiu-jie3, LIN Qing4, WEI Xiao-chen1, SONG Ran-ran1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. China Shenhua Coal to Liquid and Chemical Co., Ltd., Beijing 100011, China; 3. PetroChina Jilin Oilfield Company, Songyuan, Jilin 138000, China; 4. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 100011, China
  • Received:2013-12-02 Online:2014-09-10 Published:2014-09-16

摘要: CO2咸水层封存被广泛认为是一种具有大规模温室气体减排潜力的地学前缘技术。选取中国第一个全流程CCS项目为研究背景,结合工程实际情况,选取鄂尔多斯盆地为具体研究对象,提取相关参数,建立相应的地质模型,通过数值模拟研究咸水层多层统注时CO2在咸水中的主要封存机制、CO2在地层中的运移分布特征及其与注入能力的关系,并观测由于CO2注入引起的地层压力、CO2摩尔分数、酸碱度等的变化情况,为方案的进一步优化奠定基础。研究表明,CO2注入咸水层后,大部分进入储层上部,且注入能力越大时,注入的层位越多,注入量越大;CO2在咸水层中的存在形式有自由态、束缚态和溶解态。所有探索性研究的目的是给示范性项目的未来提供一个良好的基础优化方案。

关键词: CO2地质封存, 深部咸水层, 运移分布, 数值模拟, 神华CCS

Abstract: Geological storage of carbon dioxide (CO2) into deep saline aquifers is a leading-edge technology of greenhouse gas emissions reduction. The paper investigates China's first full-chain carbon capture and storage (CCS) project, i.e. Shenhua CCS demonstration project. Combining actual operation condition, the site of demonstration project in Ordos Basin is selected for the study. The relevant parameters are extracted to establish the geological model that is used to simulate multilayer injection of CO2 into deep saline aquifers. In order to analyze migration and distribution of CO2 while and after injection, the relationship between injection capacity and storage mechanisms of CO2 is investigated in detail. Additionally, it is also investigated on changes of formation pressure, CO2 phase, CO2 mole fraction and pH value. The numerical simulation shows that when CO2 is injected into deep saline aquifers, it is almost sequestered into the top of the reservoir. When the injection capacity is stronger, CO2 is injected into more layer formations, and the injection volume of CO2 is relatively bigger. The injected CO2 bears a very complicated phase state in deep saline aquifers. It is mixed with a free gas, trapped and dissolved phases. Simultaneously, when an injection rate is different, main phase types of injected CO2 into deep saline aquifers are different and they change with time. The change pattern of pH values is also different because of strength of seepage effect caused by different injection rates. All exploratory studies are aiming at building a good foundation to optimize future schemes of the demonstration project.

Key words: CO2 geological storage, deep saline aquifer, migration and distribution, numerical simulation, Shenhua CCS

中图分类号: 

  • O 302
[1] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[2] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[3] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[4] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[5] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[6] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[7] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[8] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[9] 张强, 李小春, 周英博, 石露, 白冰, . 高压孔隙CO2/水作用下完整四川三叠系 砂岩剪切特性的试验研究[J]. 岩土力学, 2019, 40(8): 3028-3036.
[10] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[11] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[12] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[13] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[14] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[15] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 毛 宁,张尧亮. 经验公式简便求法典型实例[J]. , 2010, 31(9): 2978 -2982 .
[5] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[6] 李伟华,赵成刚,杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. , 2010, 31(12): 3958 -3963 .
[7] 韩现民. 西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J]. , 2010, 31(S2): 297 -302 .
[8] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[9] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[10] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .