›› 2014, Vol. 35 ›› Issue (9): 2634-2641.

• 岩土工程研究 • 上一篇    下一篇

大数据时代的岩土工程监测——转折与机遇

王 浩1,覃卫民1,焦玉勇1,何 政2   

  1. 1.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;2.武汉大学 计算机学院,武汉 430071
  • 收稿日期:2013-10-10 出版日期:2014-09-10 发布日期:2014-09-16
  • 作者简介:王浩,男,1972年生,博士,研究员,主要从事岩土工程监测反馈分析、风险评估和相关软件开发方面的工作

Transitions and opportunities of geotechnical engineering monitoring in coming big data era

WANG Hao1, QIN Wei-min1, JIAO Yu-yong1, HE Zheng2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. School of Computer, Wuhan University, Wuhan 430071, China
  • Received:2013-10-10 Online:2014-09-10 Published:2014-09-16

摘要: 随着电子信息技术、科学研究与工程实践的快速发展,不断产生种类繁多、数量巨大的数据,大数据现象已经出现,在科学数据分析、电子商务和银行业等领域得到了越来越多的重视和应用,大数据即将深刻地影响着人类的生活、工作及思维。传统的数据存储方法、关系数据库、数据处理和数据分析方法逐渐不能满足大数据业务的需要。简要介绍了大数据的定义、特征、所涉及的方法和技术、带来的变革及简单的应用实例,回顾了岩土工程监测学科的历史、现状及面临的问题,指出大数据的概念与岩土工程监测具有天然的契合性,今后大规模、全方位、多维度及多场的岩土工程监测将得以实现。在大数据时代,以关联分析、成因分析及决策支持为核心的深入分析能力将成为监测工作的核心,现场监测将被提升到与试验、理论与数值模拟相同甚至是更为重要的地位。因此,岩土工程监测工作者应该重视大数据的研究,加强应用其他行业的大数据研究成果,抓住大数据对岩土工程监测带来的机遇,为未来岩土工程监测的跨越式发展奠定基础。

关键词: 大数据, 岩土工程, 监测, 数据分析, 传感器

Abstract: With the rapid development of electronic information technology, scientific research and engineering practice, a wide range and a large quantity of data have been produced continuously. The big data phenomenon has emerged. It is attracting more and more attention and application in scientific data analysis, electronic commerce and banking industry, and taking a profound impact on human life, work and thinking. Traditional data storage methods, relational databases, data processing and data analysis methods can’t meet the current needs on big data gradually. The paper introduces the definitions, characteristics, methods involved, changes brought about and simple application examples of big data. A review on history, state of art and problems of geotechnical engineering monitoring is presented. The concepts of big data naturally agree well with the geotechnical engineering monitoring. Large-scale, comprehensive, multidirectional and multifield geotechnical monitoring will become a reality in the future. The in-depth analysis capabilities such as correlation analysis, cause analysis and decision support will become the core works for the monitoring projects in the era of big data. Furthermore, the site monitoring will be promoted to the same or even more important role as the experiment, theoretical analysis and numerical simulation. Thus, the geotechnical engineering workers should pay highly attention to big data research, enhancing the use of research results of big data from other disciplines. With the opportunities brought about by big data, a rapid development of geotechnical engineering monitoring will arise in the future.

Key words: big data, geotechnical engineering, monitoring, data analysis, transducer

中图分类号: 

  • TP 392
[1] 刘泉声, 罗慈友, 朱元广, 蒋景东, 刘鹤, 彭星新, 潘玉丛, . 流变应力恢复法压力传感器传感 单元方位布设研究[J]. 岩土力学, 2020, 41(1): 336-341.
[2] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[3] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[4] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[5] 李悄, 孟繁增, 牛远志. 压重顶进框构下穿高铁引起桥墩变形及控制技术[J]. 岩土力学, 2019, 40(9): 3618-3624.
[6] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[7] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[8] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[9] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[10] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[11] 赵强, 焦玉勇, 张秀丽, 谢壁婷, 王龙, 黄刚海, . 基于显式时间积分的球颗粒DDA计算方法[J]. 岩土力学, 2019, 40(11): 4515-4522.
[12] 侯公羽, 韩育琛, 谢冰冰, 魏广庆, 李子祥, 肖海林, 周天赐, . 定点式布设光纤在隧道结构健康监测中的 预拉应变损失研究 [J]. 岩土力学, 2019, 40(10): 4120-4128.
[13] 刘 勇, 冯 帅, 秦志萌. 基于运动角差的滑坡监测点相似性评判方法[J]. 岩土力学, 2019, 40(1): 288-296.
[14] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[15] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[2] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[3] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[4] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[5] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[6] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[7] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[8] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[9] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[10] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .