›› 2006, Vol. 27 ›› Issue (S2): 91-95.

• 基础理论与实验研究 • 上一篇    下一篇

基于DDA的裂隙岩体非饱和渗流应力耦合模型研究

刘先珊   

  1. 重庆大学 土木工程学院,重庆 400044
  • 收稿日期:2006-09-28 发布日期:2006-12-16
  • 作者简介:刘先珊,女,1978生,博士,主要从事岩土工程数值计算方面的研究。
  • 基金资助:
    国家自然科学基金重点项目“裂隙岩体的渗流与力学特性研究[59579020]”

Study on unsaturated hydro–mechanical coupling model of fractured rock mass based on DDA

LIU Xian-shan   

  1. College of Civil Engineering, Chongqing University, Chongqing ,400044,china
  • Received:2006-09-28 Published:2006-12-16

摘要: 岩体饱和–非饱和渗流、应力耦合作用对工程岩体的强度和稳定性有十分重要的影响。目前对于裂隙岩体饱和渗流应力耦合的研究取得了一些进展,但在很多工程领域不能简单地采用饱和渗流分析。根据DDA力学计算和非饱和渗流计算原理,提出了新的基于DDA方法的非饱和渗流应力耦合模型。并给出了在库水位骤降工况下的边坡水力耦合算例,其计算结果显示在库水位骤降情况下:考虑水力耦合且库水位下降较快时的安全系数要小于库水位下降慢时的安全系数;考虑水力耦合的边坡稳定安全系数要小于不考虑耦合时的安全系数。仿真实验和工程应用表明其计算成果是符合实践规律的。

关键词: 裂隙岩体, 非饱和, 渗流应力耦合, DDA模型

Abstract: Unsaturated hydro–mechanical coupling of fractured rock mass has important influenee on the strength and stability of rock mass. In recent years, the research of saturated hydro–mechanical coupling has achieved some advances, but saturated flow can’t be adopted simply in many practical projects. Based on the mechanical theory of DDA and fluid flow analysis of fractured network, unsaturated hydro–mechanical coupling analysis model is put forward naturally. And then taking a reservoir rock slope for example, the stability of rock slope is discussed when water level of reservoir falls. And it is shown that the safety factor is lower when the water level falls quckly and when considering coupling; it is consistent with the fact.

Key words: fractured rock mass, unsaturated, ydro–mechanical coupling, DDA model

中图分类号: 

  • TU 452
[1] 周凤玺, 高国耀, . 非饱和土中热−湿−盐耦合作用的稳态分析[J]. 岩土力学, 2019, 40(6): 2050-2058.
[2] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[3] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[4] 杨宗佶, 蔡 焕, 雷小芹, 王礼勇, 丁朋朋, 乔建平, . 非饱和地震滑坡堆积体降雨破坏水-力 耦合行为试验[J]. 岩土力学, 2019, 40(5): 1869-1880.
[5] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
[6] 谢 强, 田大浪, 刘金辉, 张建华, 张志斌, . 土质边坡的饱和−非饱和渗流分析及特殊应力修正[J]. 岩土力学, 2019, 40(3): 879-892.
[7] 方瑾瑾, 冯以鑫, 赵伟龙, 王立平, 余永强, . 真三轴条件下原状黄土的非线性本构模型[J]. 岩土力学, 2019, 40(2): 517-528.
[8] 张 昭, 程靖轩, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, . 基于土颗粒级配预测非饱和 渗透系数函数的物理方法[J]. 岩土力学, 2019, 40(2): 549-560.
[9] 李 崴, 王者超, 毕丽平, 刘 杰, . 辐射流条件下裂隙岩体渗透性表征单元体尺寸 与等效渗透系数[J]. 岩土力学, 2019, 40(2): 720-727.
[10] 陈正汉, 郭 楠、. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.
[11] 姚志华, 陈正汉, 方祥位, 黄雪峰, . 非饱和原状黄土弹塑性损伤流固耦 合模型及其初步应用 [J]. 岩土力学, 2019, 40(1): 216-226.
[12] 刘艳章, 郭赟林, 黄诗冰, 蔡原田, 李凯兵, 王刘宝, 李 伟, . 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学, 2018, 39(S2): 62-71.
[13] 段晓梦,曾立峰, . 非饱和土的承载结构与岩土广义结构性[J]. , 2018, 39(9): 3103-3112.
[14] 李东奇,李宗利,吕从聪. 考虑裂隙附加水压的岩体断裂强度分析[J]. , 2018, 39(9): 3174-3180.
[15] 李 宣, 孙德安,张俊然,. 吸力历史对非饱和粉土动力变形特性的影响[J]. , 2018, 39(8): 2829-2836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任 松,姜德义,杨春和. 盐穴储气库破坏后地表沉陷规律数值模拟研究[J]. , 2009, 30(12): 3595 -3601 .
[2] 张晁军,石耀霖,马 丽. 昆仑山大地震震后形变反映的地壳岩石流变特性[J]. , 2009, 30(9): 2552 -2558 .
[3] 周红波,高文杰,蔡来炳,张 辉. 基于WBS-RBS的地铁基坑故障树风险识别与分析[J]. , 2009, 30(9): 2703 -2707 .
[4] 翟 伟,宋二祥. 移动荷载下瞬态振动的三维移动坐标有限元分析[J]. , 2009, 30(9): 2830 -2836 .
[5] 陈运平,王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. , 2010, 31(4): 1030 -1034 .
[6] 丁万涛,雷胜友. 加筋膨胀土不同布筋型式三轴试验研究[J]. , 2010, 31(4): 1147 -1150 .
[7] 谈云志,孔令伟,郭爱国,万 智. 压实过程对红黏土的孔隙分布影响研究[J]. , 2010, 31(5): 1427 -1430 .
[8] 周爱军,栗 冰. CFG桩复合地基褥垫层的试验研究和有限元分析[J]. , 2010, 31(6): 1803 -1808 .
[9] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[10] 符策简. 高含盐粉土的力学特性试验研究[J]. , 2010, 31(S1): 193 -197 .