›› 2005, Vol. 26 ›› Issue (S2): 91-94.

• 基础理论与实验研究 • 上一篇    下一篇

对挡墙后无粘性填土中破裂面的研究

许锡昌,陈善雄,徐海滨   

  1. 中国科学院武汉岩土力学研究所,武汉 430071
  • 收稿日期:2005-03-30 发布日期:2005-12-16
  • 作者简介:许锡昌,男,博士,1972年生,主要从事土与结构物相互作用方面的研究

Study on active and passive failure surface in backfilled cohesionless soil behind rigid retaining wall

XU Xi-chang, CHEN Shan-xiong, XU Hai-bin   

  1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2005-03-30 Published:2005-12-16

摘要: 在传统的库伦土压力理论中,刚性挡墙后无粘性填土中的破裂面被假定为平面。然而,一些室内试验和现场测试结果均已证明了实际破裂面是曲面。以刚性挡墙后无粘性填土中的破裂面为研究对象,以竖向微分单元法为基础,利用变分原理推导了主、被动状态下关于破裂面曲线的微分方程,并对该方程进行了求解。研究结果表明,当墙背光滑或墙背与土体的摩擦系数为定值时,填土中的破裂面和破裂角均与库伦土压力理论相同;当墙背与填土的摩擦系数呈线性规律变化时,对应的破裂面为曲面。最后,讨论了墙背摩擦角和填土内摩擦角对破裂角的影响。

关键词: 破裂面, 刚性挡墙, 无粘性土, 变分法, 解析解

Abstract: In the classical Coulomb’s earth pressure theory, the failure surface in the backfilled cohesionless soil behind rigid retaining wall in slope engineering is assumed a plane. However, it has been proved by a number of laboratory and field tests that this failure surface is actually a curved surface. In this paper, based on the vertical differential element method and the variational principle with moveable boundary, a quadratic ordinary differential equation of the first order about the failure surface is deduced. Three cases of the equation are discussed: 1) without lateral shear force at the interface between two elements, and the back of the retaining wall is frictionless, the failure surface is a plane; 2) lateral shear force is a constant, and the back of the wall is rough, the failure surface is also a plane, the two cases above mentioned are identical to Coulomb’s theory; 3) lateral shear force increases linearly from the tip to the toe, the failure surface is a curved surface. Results show that the proposed approach can predict right failure pattern of the backfilled cohesionless soil, which is in good agreement with that of the laboratory and field tests.

Key words: failure surface, rigid retaining wall, cohesionless soil, variational principle, analytical solution

中图分类号: 

  • TU 443
[1] 赵晓彦, 范宇飞, 刘亮, 蒋楚生, . 铁路台阶式加筋土挡墙潜在破裂面特征模型试验[J]. 岩土力学, 2019, 40(6): 2108-2118.
[2] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[3] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[4] 吴 纲,孙红月,付崔伟,陈永珍,汤碧辉,. 软土虹吸排水完整井非稳定流模型及解析解[J]. , 2018, 39(9): 3355-3361.
[5] 吉恩跃,朱俊高,余 挺,金 伟,. 橡皮膜嵌入解析解及试验验证[J]. , 2018, 39(8): 2780-2786.
[6] 夏长青,胡安峰,崔 军,吕文晓,谢康和, . 饱和软土成层地基一维非线性固结解析解[J]. , 2018, 39(8): 2858-2864.
[7] 张丙强, 王启云, 卢晓颖, . 软土地层浅埋圆形隧道非达西渗流场解析研究[J]. 岩土力学, 2018, 39(12): 4377-4384.
[8] 汪 磊,李林忠,徐永福,夏小和,孙德安,. 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. , 2018, 39(11): 4142-4148.
[9] 胡之锋,陈 健,邱岳峰,李健斌,周兴涛, . 挡墙水平变位诱发地表沉降的显式解析解[J]. , 2018, 39(11): 4165-4175.
[10] 李传勋,王 素. 软土一维非线性固结近似解析解[J]. , 2018, 39(10): 3548-3554.
[11] 张 浩,石名磊,郭院成,李永辉,. 边载作用下桥梁基桩-立柱的位移特征与受力分析[J]. , 2017, 38(9): 2683-2692.
[12] 庄 超,周志芳,韩江波,. 一种长期观测资料确定弱透水层参数的方法[J]. , 2017, 38(5): 1359-1364.
[13] 解 益,李培超,汪 磊,孙德安,. 分数阶导数黏弹性饱和土体一维固结半解析解[J]. , 2017, 38(11): 3240-3246.
[14] 郑长杰,丁选明,栾鲁宝, . 黏弹性地基中管桩水平动力特性分析[J]. , 2017, 38(1): 26-32.
[15] 王华宁,吴 磊,. 斜坡下考虑支护效应浅埋隧道力学响应的时效解答[J]. , 2016, 37(S2): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鲁祖德,陈从新,陈建胜,童志怡,左保成,戴旭明. 岭澳核电三期强风化角岩边坡岩体直剪试验研究[J]. , 2009, 30(12): 3783 -3787 .
[2] 瞿万波,刘新荣,傅晏,秦晓英. 洞桩法大断面群洞交叉隧道初衬数值模拟[J]. , 2009, 30(9): 2799 -2804 .
[3] 谈云志,孔令伟,郭爱国,万 智. 压实红黏土水分传输的毛细效应与数值模拟[J]. , 2010, 31(7): 2289 -2294 .
[4] 王云岗,熊 凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. , 2010, 31(8): 2619 -2624 .
[5] 孟庆山,孔令伟,陈能远,范建海,郭 刚. 桩锚挡墙联合支护残积土边坡离心模型试验研究[J]. , 2010, 31(11): 3379 -3384 .
[6] 刘维正,石名磊,缪林昌. 基于扰动状态概念的结构性土压缩特性分析[J]. , 2010, 31(11): 3475 -3480 .
[7] 徐志军,郑俊杰,张 军,马 强. 聚类分析和因子分析在黄土湿陷性评价中的应用[J]. , 2010, 31(S2): 407 -411 .
[8] 邓宗伟,冷伍明,李志勇,岳志平. 喷混凝土边坡温度场与应力场耦合的有限元时效分析[J]. , 2009, 30(4): 1153 -1158 .
[9] 王洪亮 ,范鹏贤 ,王明洋 ,李文培 ,钱岳红. 应变率对红砂岩渐进破坏过程和特征应力的影响[J]. , 2011, 32(5): 1340 -1346 .
[10] 杨建平,陈卫忠,戴永浩. 裂隙岩体变形模量尺寸效应研究Ⅰ:有限元法[J]. , 2011, 32(5): 1538 -1545 .