›› 2006, Vol. 27 ›› Issue (S1): 657-660.

• 基础理论与实验研究 • 上一篇    下一篇

千将坪滑坡动力学过程仿真模拟

姜清辉1,2,周小恒2,张 煜2,罗先启1   

  1. 1. 三峡大学 湖北省防灾减灾重点实验室 宜昌 443002;2. 水资源与水电工程科学国家重点实验室 武汉大学 武汉430072
  • 收稿日期:2006-05-08 发布日期:2006-12-15
  • 作者简介:姜清辉,男,1972年生,博士,副教授,主要从事岩土力学学值计算方面的研究。
  • 基金资助:
    国家自然科学基金重点项目(50539100), 湖北省科技攻关计划课题(2004AA306B03) ,湖北省防灾减灾重点实验室(三峡大学)开放基金 (2002ZS07)资助

DDA simulation of Qianjiangping landslide movement

JIANG Qing-hui1,2,ZHOU Xiao-heng2,ZHANG Yu2,LUO Xian-qi1   

  1. 1. Hubei Provincial Key Laboratory of Preventing & Mitigating Disasters, China Three Gorges University, Yichang 443002, China; 2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2006-05-08 Published:2006-12-15

摘要: 滑坡体的失稳破坏是一个动态过程,动力学行为起着非常重要的作用。采用DDA方法对长江三峡库区千将坪滑坡的运动全过程进行了数值模拟研究。模拟方案充分依据该滑坡的地质、地形特征,按不同岩土体和地质结构面类型进行块体单元划分,模拟了滑坡发生、发展的渐进破坏过程以及滑坡触发后的运动情况。模拟结果表明,千将坪滑坡是以斜坡坡脚的局部破坏为其运动的开始阶段,并进一步牵引上部滑体,在地下水压力作用下最终产生整体滑动。

关键词: 千将坪滑坡, DDA, 数值模拟, 动态过程

Abstract: Kinematics plays a very important role in the behavior of landslides in discontinuous media. Discontinuous Deformation Analysis (DDA) is applied to simulate the whole movement process of Qianjiangping landslide located in the area of Three Gorges Reservoir. The simulation scheme is mostly based on the characters of geology and landform; and the mesh of elements is based on different types of rock and geological joints. The gradual failure and the movement process after sliding are simulated, all of which are in the working conditions of reservoir impoundment and rainfall. The results of simulation indicate that the local failure in the toe of the slope is the beginning of the Qianjiangping landslide; and it gives a further dragging on the upside sliding body; and finally the landslide is triggered by groundwater pressure.

Key words: Qianjiangping landslide, DDA, kinematics, numerical simulation

中图分类号: 

  • O 347
[1] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[2] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[3] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[4] 李世俊, 马昌慧, 刘应明, 韩玉珍, 张 彬, 张 嘎, . 离心模型试验与数值模拟相结合研究 采空边坡渐进破坏特性[J]. 岩土力学, 2019, 40(4): 1577-1583.
[5] 蔡奇鹏, 甘港璐, 吴宏伟, 陈星欣, 肖朝昀, . 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40(3): 1067-1075.
[6] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[7] 杨爱武, 潘亚轩, 曹 宇, 尚英杰, 吴可龙, . 吹填软土低位真空预压室内试验及其数值模拟[J]. 岩土力学, 2019, 40(2): 539-548.
[8] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[9] 陈上元, 赵 菲, 王洪建, 袁广祥, 郭志飚, 杨 军, . 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332-342.
[10] 郑俊杰, 吕思祺, 曹文昭, 景 丹, . 高填方膨胀土作用下刚柔复合桩基 挡墙结构数值模拟[J]. 岩土力学, 2019, 40(1): 395-402.
[11] 李 杨, 佘成学, 朱焕春, . 现场堆石体振动碾压的颗粒流模拟及验证[J]. 岩土力学, 2018, 39(S2): 432-442.
[12] 张治国,张成平,马兵兵,宫剑飞,叶 铜,. 滑坡作用下既有隧道锚索加固的物理模型试验与数值模拟研究[J]. , 2018, 39(S1): 51-60.
[13] 欧孝夺,潘 鑫,侯凯文,江 杰,柳子炎,. 广西北部湾人造陆域吹填土电冲击特性研究[J]. , 2018, 39(S1): 348-354.
[14] 刘 建,赵国彦,梁伟章,吴 浩,彭府华,. 非均匀岩石介质单轴压缩强度及变形破裂规律的数值模拟[J]. , 2018, 39(S1): 505-512.
[15] 李兆华,胡 杰,冯吉利,龚文俊. 基于黏弹塑性本构模型的泥石流数值模拟[J]. , 2018, 39(S1): 513-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[3] 丁文其,袁森林,高小庆,谢东武. 电力隧道超大直径顶管施工扰动特性研究[J]. , 2010, 31(9): 2901 -2906 .
[4] 刘明贵,刘绍波,张国华. GPU通用计算模式在岩土工程中的应用[J]. , 2010, 31(9): 3019 -3024 .
[5] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[6] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[7] 陈新泽. 基于FLAC3D预应力锚拉桩作用机制和加固效果研究[J]. , 2009, 30(S2): 499 -504 .
[8] 张 磊 ,龚晓南 ,俞建霖. 考虑土体屈服的纵横荷载单桩变形内力分析[J]. , 2011, 32(8): 2441 -2445 .
[9] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[10] 汪 波 ,何 川 ,吴德兴 ,耿 萍. 苍岭特长公路隧道地应力场反演分析[J]. , 2012, 33(2): 628 -634 .