›› 2014, Vol. 35 ›› Issue (S2): 168-172.

• 基础理论与实验研究 • 上一篇    下一篇

全尾膏体动态压密特性及其数学模型

王 勇1, 2,吴爱祥1, 2,王洪江2,周 勃2   

  1. 1.北京科技大学 钢铁冶金新技术国家重点实验室,北京 100083; 2.北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2013-08-07 出版日期:2014-10-31 发布日期:2014-11-12
  • 通讯作者: 吴爱祥,男,1963年生,博士,教授,博士生导师,主要从事膏体充填采矿、矿山岩石力学、溶浸采矿等方面的科研与教学工作。E-mail: wuaixiang@126.com E-mail:wangyong8551@126.com
  • 作者简介:王勇,男,1985年生,博士研究生,主要从事膏体充填采矿理论和工艺方面的研究工作。
  • 基金资助:

    国家“十二五”科技支撑计划课题资助项目(No. 2012BAB08B02,No. 2013BAB02B05);国家自然科学基金资助项目(No. 51374034, No. 51374035);高等学校博士学科点专项科研基金资助项目(No. 20110006130003,No. 2011000612002)。

Dynamic thickening characteristics and mathematical model of total tailings

WANG Yong1, 2, WU Ai-xiang1, 2, WANG Hong-jiang2, ZHOU Bo2   

  1. 1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of High Efficient Mining and Safety of Metal, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2013-08-07 Online:2014-10-31 Published:2014-11-12

摘要: 深锥浓密机是膏体技术中尾矿浓缩工艺的关键设备,深锥浓密机底流质量分数与泥层压力密切相关,孔隙比是表征底流质量分数的重要物理参数,但是孔隙比随泥层压力的变化规律并不清晰。针对这一问题,首先,提出了尾矿可浓缩性能表征的物理概念——有效孔隙比,即孔隙比减去饱和孔隙比;其次,采用某矿全尾砂进行了动态压密试验,结果表明,当泥层高度为31~200 mm,对应泥层压强为2 477~4 410 Pa,获得的底流质量分数范围为73.26%~78.30%,该质量分数范围对应的有效孔隙比为0.433~0.191。回归有效孔隙比与泥层压强数学关系得知,二者遵循幂函数Allometric模型;最后,提出了膏体动态压密数学模型,并根据模型曲线,将膏体动态压密分为3个区域:(1)线性压缩区,孔隙比随泥层压强增大而基本呈线性关系,孔隙比变化幅度较大;(2)衰减压缩区,随着压强继续增大,孔隙比下降幅度变缓,膏体趋于饱和;(3)恒定压缩区,该区域膏体达到饱和状态,孔隙比随着压强增大而基本恒定。该研究揭示了尾矿浓缩过程中孔隙比随泥层压强的变化规律,为浓密机设计及运行提供理论依据。

关键词: 深锥浓密机, 膏体, 泥层压力, 孔隙比, 数学模型

Abstract: The key equipment of thickening process in the action of cemented paste backfill (CPB) is deep cone thickener (DCT). The underflow mass fraction of DCT is significant related to the slurry pressure. And the void ratio is an important representation parameter of the underflow mass fraction. However, the change rule between the void ratio and the slurry pressure is not clear. For the interpretation of the problem aforementioned, a new concept for the tailings thickening degree is proposed and named as effective void ratio (EVR). The EVR is referred to void ratio minus saturated void ratio. A total tailings dynamic thickening experiment is conducted. The results show that the slurry pressure is between 2 477-4 410 Pa as the slurry height is between 31-200 mm. The underflow mass fraction is calculated as 73.26%-78.30%, which corresponding the EVR is 0.433-0.191. The regression result indicates that EVR and slurry pressure follow the power function. Moreover, the paste dynamic thickening model is proposed. According to this proposed model, the paste dynamic thickening behaviour is divided into three processes: (1) linear thickening zone, with the increasing of slurry pressure, the void ratio decreases quickly almost as linear, (2) attenuation compression zone, with the slurry pressure increasing continues, the void ratio decreases gradually and the paste tends to be saturated, (3) constant thickening zone, the tailings achieve saturated state and the void ratio become constant. This study reveals the change rule between the void ratio and slurry pressure in the process of thickening and provides the theoretical foundation for the thickener design and operation.

Key words: deep cone thickener, paste, slurry pressure, void ratio, mathematical model

中图分类号: 

  • TD 853,TD 854
[1] 王龙, 朱俊高, 郭万里, 陆阳洋, . 无黏性土压缩模型及其验证[J]. 岩土力学, 2020, 41(1): 229-234.
[2] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[3] 刘孟适, 罗 强, 蒋良潍, 陆清元, 梁多伟, . 粗粒土渗透试验边壁孔隙特征及 处理层最优厚度研究[J]. 岩土力学, 2019, 40(5): 1787-1796.
[4] 朱雨萌, 吴 琪, 陈国兴, . 基于颗粒接触状态理论的砂-粉混合料 剪切波速试验[J]. 岩土力学, 2019, 40(4): 1457-1464.
[5] 王丽琴, 邵生俊, 王 帅, 赵 聪, 石鹏鑫, 周 彪, . 原状黄土的压缩曲线特性[J]. 岩土力学, 2019, 40(3): 1076-1084.
[6] 刘钢, 陆瑞, 赵明志, 罗强, 吕超, . 基于椭球模型的圆砾堆积特性分析[J]. 岩土力学, 2019, 40(11): 4371-4379.
[7] 郭林坪,孔令伟,徐 超,杨爱武,. 厦门花岗岩残积土物理力学指标关联性定量表征初探[J]. , 2018, 39(S1): 175-180.
[8] 王海波,吴 琪,杨 平,. 细粒含量对饱和砂类土液化强度的影响[J]. , 2018, 39(8): 2771-2779.
[9] 宋云奇,武朝军,叶冠林,. 上海浅部黏土渗透系数及其各向异性[J]. , 2018, 39(6): 2139-2144.
[10] 方瑾瑾,冯以鑫,朱昌星,. 真三轴条件下Q3原状黄土的力学特性[J]. , 2018, 39(5): 1699-1708.
[11] 陈 波,孙德安,高 游,李 健,. 上海软黏土的孔径分布试验研究[J]. , 2017, 38(9): 2523-2530.
[12] 钱 琨 ,王新志 ,陈剑文 ,刘鹏君,. 南海岛礁吹填钙质砂渗透特性试验研究[J]. , 2017, 38(6): 1557-1564.
[13] 孙文静,刘仕卿,孙德安,魏振飞. 掺砂率对膨润土与砂混合物膨胀特性的影响[J]. , 2016, 37(6): 1642-1648.
[14] 张 龙 ,孙德安 ,刘月妙,. 两种高庙子钠基膨润土膨胀特性比较研究[J]. , 2016, 37(12): 3447-3454.
[15] 桂 跃,付 坚,吴承坤,曹 净,高玉峰, . 高原湖相泥炭土渗透特性研究及机制分析[J]. , 2016, 37(11): 3197-3207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[5] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[6] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[7] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[8] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[9] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[10] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .