›› 2014, Vol. 35 ›› Issue (11): 3177-3183.

• 基础理论与实验研究 • 上一篇    下一篇

高温作用后花岗岩三轴压缩试验研究

徐小丽1, 2,高 峰2,张志镇2   

  1. 1.南通大学 建筑工程学院,江苏 南通 226019;2.中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221008
  • 收稿日期:2013-07-14 出版日期:2014-11-11 发布日期:2014-12-10
  • 作者简介:徐小丽,女,1981年生,博士,副教授,主要从事岩石热力学、岩石热损伤等方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 11202108);中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金(No. SKLGDUEK1204);南通大学前期预研科研项目(No. 11ZY006)。

Research on triaxial compression test of granite after high temperatures

XU Xiao-li1, 2, GAO Feng2, ZHANG Zhi-zhen2   

  1. 1. School of Architecture and Civil Engineering, Nantong University, Nantong, Jiangsu 226019, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
  • Received:2013-07-14 Online:2014-11-11 Published:2014-12-10

摘要: 为综合考察温度、围压对花岗岩力学性质及破坏方式的影响,在高温(25℃~1 000 ℃)作用后,利用MTS815.02电液伺服材料试验系统对花岗岩岩样进行不同围压作用下的三轴压缩试验。研究结果表明,(1)围压一定时,经历不同高温作用后花岗岩三轴压缩全应力-应变曲线经历了压密、弹性、屈服、破坏、塑性流动5个阶段;(2)经历不同高温作用后岩样三轴抗压强度与围压呈非线性二次多项式增长关系,围压为40 MPa时的抗压强度比单轴抗压强度提高了382.30%;常规三轴压缩条件下,400 ℃是花岗岩力学参数的阀值温度;(3)经历高温作用后,岩样弹性模量随围压升高呈增大趋势,围压为40 MPa时的弹性模量比单轴时提高了90.26%;随温度升高呈二次非线性减小,1 000 ℃时的弹性模量比25℃时降低了57.16%;(4)花岗岩的失稳型式同时取决于围压和温度。单轴压缩状态下,随着温度的升高,岩样变形破坏型式由脆性破裂向塑性变形过渡,失稳型式在低温时为突发失稳、中高温为准突发失稳,温度高于800 ℃为渐进破坏;三轴压缩状态下,随着围压的增大,岩样破裂型式由脆性张拉破裂逐渐向剪切破裂过渡,岩样的失稳型式以突发失稳为主。在试验温压范围内,影响花岗岩力学性质的首要因素是温度,其次是围压。

关键词: 花岗岩, 温度, 围压, 力学性质, 失稳型式

Abstract: In order to study the effect of temperature and confining pressure on rock mechanical properties and failure mode, experiments on granite under triaxial compression of different confining pressure from 0 to 40 MPa were conducted after high temperature of 25-1 000 ℃ by the MTS815.02 servo-controlled testing machine. The results show that: (1) Complete stress-strain curves of granite which heated to various temperatures under conventional triaxial compression with fixed confining pressure have experienced compaction, elasticity, yield, failure and plastic flow five stages. (2) Relationship between triaxial compressive strength of granite and confining pressure after high temperatures is nonlinear quadratic polynomial relations. When the confining pressure is 40 MPa, the triaxial compressive strength is increased 382.30% than uniaxial compressive strength; 400 ℃ is the threshold temperature of granite mechanical parameters under conventional triaxial compression conditions. (3) Elastic modulus of granite tends to increase with the confining pressure and quadratic nonlinearly decrease with the temperature, which is increased 90.26% than that at uniaxial compression when the confining pressure is 40 MPa, and when the temperature is 1 000 ℃, it is decreased 57.16% than that at 25 ℃. (4) Form of deformation and failure of rock samples is from brittle fracture transiting to plastic deformation as the temperature increases under uniaxial compression state. Instability mode is sudden instability at low temperatures, quasi- abrupt instability at medium-high temperature, and progressive failure at temperature higher than 800 ℃. Rupture type of rock samples changes from brittle tensile fracture to shear fracture gradually with the increase of confining pressure under triaxial compression. Instability mode of rock is dominated by sudden instability. In the experimental temperature and pressure range, temperature is the primary factor affecting mechanical properties of rock samples, followed by confining pressure, while the instability mode of granite depends on both confining pressure and temperature.

Key words: granite, temperature, confining pressure, mechanical characteristics, instability mode

中图分类号: 

  • TU 452
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[3] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[4] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[5] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[6] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[7] 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171.
[8] 范运辉, 朱其志, 倪涛, 张坤, 张振南, . 基于弹性张量离散化的脆延转变本构模型研究[J]. 岩土力学, 2019, 40(S1): 181-188.
[9] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[10] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[11] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[12] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[13] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[14] 方金城, 孔纲强, 陈斌, 车平, 彭怀风, 吕志祥, . 混凝土水化作用对群桩热力学特性影响现场试验[J]. 岩土力学, 2019, 40(8): 2997-3003.
[15] 蔡雨, 徐林荣, 周德泉, 邓超, 冯晨曦, . 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8): 3011-3018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[3] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[9] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[10] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .