›› 2015, Vol. 36 ›› Issue (1): 205-211.doi: 10.16285/j.rsm.2015.01.028

• 岩土工程研究 • 上一篇    下一篇

页岩储层体积压裂裂缝扩展机制研究

潘林华1, 2, 3,程礼军1, 2, 3,张士诚4,郭天魁5,柳凯誉6   

  1. 1. 重庆地质矿产研究院 国土资源部页岩气资源勘查重点实验室,重庆,400042;2. 重庆地质矿产研究院 重庆市页岩气资源与勘查工程技术研究中心,重庆 400042;3. 油气资源与探测国家重点实验室重庆页岩气研究中心,重庆 400042;4. 中国石油大学(北京) 石油工程学院,北京 102249;5. 中国石油大学(华东)石油工程学院,山东 青岛 266580;6. 长城钻探公司井下作业分公司,辽宁 盘锦 124000
  • 收稿日期:2013-08-12 出版日期:2015-01-12 发布日期:2018-06-13
  • 作者简介:潘林华,男,1982年生,博士,工程师,主要从事岩石力学、地应力和压裂裂缝起裂和扩展等方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 51304258);“973计划项目”渝东南地区页岩气资源潜力评价(No. 2012CB214705-05);“863计划”页岩气勘探开发新技术(No. 2013AA064503);重庆市国土资源和房屋管理局科技计划项目(No. CQGT-KJ-2012-3)。

Mechanism of fracture propagation via numerical stimulation of reservoir volume fracture in shale reservoirs

PAN Lin-hua1, 2, 3,CHENG Li-jun1, 2, 3,ZHANG Shi-cheng4,GUO Tian-kui5,LIU Kai-yu6   

  1. 1. Key Laboratory of Shale Gas Exploration,Ministry of Land and Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 2. Chongqing Engineering Research Center for Shale Gas Resources & Exploration, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 3. Chongqing Shale Gas Research Center of State Key Laboratory of Petroleum Resources and Prospecting, Chongqing 400042, China; 4. Faculty of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 5. Faculty of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shangdong 266580, China; 6. Downhole Operation Company of Great Wall Drilling Company, Panjin, Liaoning 124000, China
  • Received:2013-08-12 Online:2015-01-12 Published:2018-06-13

摘要: 页岩储层天然裂缝、水平层理发育,水力压裂过程中可能形成复杂的体积裂缝。针对页岩储层体积裂缝扩展问题,基于流-固耦合基本方程和损伤力学原理,建立了页岩储层水力压裂体积裂缝扩展的三维有限元模型。将数值模型的模拟结果与页岩储层裂缝扩展室内试验结果进行对比,二者吻合较好,从而证明了数值模型的可靠性。通过一系列数值模拟发现:(1)水力压裂过程中水平层理可能张开,形成水平缝,水平与垂直缝相互交错,形成复杂的体积裂缝网络;(2)水平主应力差增大,体积裂缝的分布长度(水平最大主应力方向压裂裂缝的展布距离)增加、分布宽度(水平最小主应力方向压裂裂缝的展布距离)减小,体积裂缝的长宽比增加;(3)压裂施工排量增大,体积裂缝的分布长度减小、宽度增加,压裂裂缝的长宽比降低;(4)天然裂缝的残余抗张强度增大,体积裂缝分布宽度减小、分布长度增加,体积裂缝的长宽比增加。研究成果可以为国内的页岩气的压裂设计和施工提供一定的参考和借鉴。

关键词: 页岩储层, 天然裂缝, 水平层理, 裂缝扩展, 体积裂缝

Abstract: Due to the highly developed natural fractures and horizontal beddings in shale reservoirs, it is possible to generate complex volume fractures during hydraulic fracture treatment. In order to investigate the propagation process of complex fracture network, a three dimensional finite element model for volume fracture propagation of hydraulic fracture in shale reservoirs is built using fluid-solid coupling basic equations in porous medium and basic theory of damage mechanics. The numerical simulation results are in good accordance with laboratory experiment of shale fracture propagation, which prove the reliability of the numerical model. After a series of numerical simulations, some conclusions are drawn as follws: (1) The horizontal beddings can open and form horizontal fractures in hydraulic fracturing. They can intersect with vertical fractures and finally generate complex volume fracture network. (2) As the horizontal stress difference increases, the length of stimulated reservoir volume (SRV) can increase and the width can decrease, which means the ratio of length to width of SRV can increase. The length is the distribution distance of volume fracture along horizontal maximum principal insitu stress. The width is the distribution distance of volume fracture along horizontal minimum principal insitu stress. (3) As the pump rate of fracturing increases, the SRV length can decrease, width can increase, and the ratio of length to width of SRV can decrease accordingly. (4) When the residual tensile strength of the natural fracture becomes stronger, the width of SRV can decrease, the length and the ratio of length to width of SRV can increase. Research results can offer some references for hydraulic fracture design and operation of shale gas in China.

Key words: shale reservoir, natural fracture, horizontal bedding, fracture propagation, volume fracture

中图分类号: 

  • TE 357
[1] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[2] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[3] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[4] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[5] 蔡奇鹏,吴宏伟,胡 平,陈星欣,郭力群,. 隐伏裂缝对互层胶结土中正断层扩展影响研究[J]. , 2017, 38(7): 2015-2021.
[6] 王 磊,杨春和,侯振坤,郭印同,魏元龙,蒋廷学,. 预制横缝条件下水力裂缝的起裂和扩展[J]. , 2016, 37(S1): 88-94.
[7] 龚迪光,曲占庆,李建雄,曲冠政,曹彦超,郭天魁. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. , 2016, 37(5): 1512-1520.
[8] 侯振坤 ,杨春和 ,王 磊 ,刘鹏君 ,郭印同 ,魏元龙 ,李 芷,. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. , 2016, 37(2): 407-414.
[9] 仲冠宇,王瑞和,周卫东,杨焕强. 人工裂缝逼近条件下天然裂缝破坏特征分析[J]. , 2016, 37(1): 247-255.
[10] 邵 磊 ,迟世春 . 堆石料单轴流变试验的颗粒流模拟[J]. , 2013, 34(5): 1487-1494.
[11] 刘杏红,周创兵,常晓林,周 伟. 大体积混凝土温度裂缝扩展过程模拟[J]. , 2010, 31(8): 2666-2670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄建华,宋二祥. 大型锚碇基础围护工程冻结帷幕力学性态研究[J]. , 2009, 30(11): 3372 -3378 .
[2] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[5] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[6] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[7] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[8] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .
[9] 赵跃堂,林家炜,石 磊. 冲击荷载作用下层裂问题研究[J]. , 2011, 32(S2): 122 -126 .
[10] 王国粹,杨 敏. 砂土中水平受荷桩非线性分析[J]. , 2011, 32(S2): 261 -267 .