›› 2015, Vol. 36 ›› Issue (7): 1856-1864.doi: 10.16285/j.rsm.2015.07.005

• 基础理论与实验研究 • 上一篇    下一篇

冻融循环过程中土体的孔隙水压力测试研究

张莲海1, 2,马 巍1,杨成松1   

  1. 1. 中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室,甘肃 兰州 730000;2. 中国科学院大学,北京 100049
  • 收稿日期:2014-04-10 出版日期:2015-07-11 发布日期:2018-06-13
  • 通讯作者: 马巍,男,1963年生,博士,研究员,主要从事冻土力学方面的研究工作。E-mail: mawei@lzb.ac.cn E-mail: zhanglh@lzb.ac.cn
  • 作者简介:张莲海,男,1982年生,博士,主要从事冻土物理学方面的研究工作。
  • 基金资助:
    自然科学基金面上项目(No. 41271087);国家重点基础研究发展计划资助(973项目)(No. 2012CB026106);国家自然科学基金优秀国家重点实验室研究项目(No. 41023003);国家自然科学基金创新群体(No. 41121061);冻土工程国家重点实验室自主项目(No. SKLFSE-ZQ-31);中国科学院寒旱所青年人才成长基金。

Pore water pressure measurement for soil subjected to freeze-thaw cycles

ZHANG Lian-hai1, 2,MA Wei1,YANG Cheng-song1   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-04-10 Online:2015-07-11 Published:2018-06-13

摘要: 冻融循环对土的结构以及物理力学性质有着重要影响,其变化与冻融过程中的孔隙水压力变化有密切关系。但土体冻结过程中的孔隙水压力测试一直是冻土土工测试试验的技术难题。针对这一难题,研发了一种适用于冻结土体孔隙水压力测试的探头,并对砂土和粉质黏土在冻融循环过程中的孔隙水压力发展变化进行了实时监测,获得了圆柱试样冻融循环过程中不同深度处的孔隙水压力变化过程。在冻结过程中,粉质黏土形成冻结缘区及可视的分凝冰,而砂土则无冻结缘及分凝冰的形成。冻融循环过程中土体内部的孔隙水压力变化受温度、冻结速率、冻融循环以及土质等因素的影响。孔隙水压力随温度的循环变化而经历周期性变化:冻结过程中,孔隙水压力不断下降,吸力不断增加;融化过程中,孔隙水压力增大。而冻结速率、冻融循环及土质主要对孔隙水压力降的幅值变化产生影响。此外,冻结锋面位置附近孔隙水压力的下降、吸力的增加,正是水分由未冻区向冻结区迁移的主要驱动力。根据以上试验结果及其理论分析发现,所研制的孔隙水压力探头具有一定的实用性。

关键词: 孔隙水压力, 冻融循环, 水分迁移, 干密度

Abstract: The freeze-thaw cycles change the structure of soils and influence their physical and mechanical properties, which can in turn be closely related to the pore water pressure change. However, measuring the pore water pressure of freezing soils has always been a challenge task. Here a new pore water pressure probe is developed and used to measure variations of pore water pressures of sand and silty clay during freeze-thaw cycles, from which the pore water pressures at three different depths of a cylindrical specimen are obtained. It is found that the frozen fringe and some ice lens occur in the silty clay samples during freezing; while no frozen fringe and ice lens form in sand samples. The pore water pressure is influenced by temperature, freezing rate, freeze-thaw cycles, soil types and others. The pore water pressure experiences a periodical change during the freeze-thaw cycles. The pore water pressure decreases and suction increases gradually during freezing, whereas the pore water pressure increases during thawing. The freezing rate, freeze-thaw cycles and soil types can primarily influence the amplitude of pore water pressure drop. In addition, the pore water pressure drop and suction increase near the freezing front are the major driving force of water migration from unfrozen zone to frozen zone. The above results show that the pore water pressure probe can be effectively used to measuring the pore water pressure of frozen soils.

Key words: pore water pressure, freeze-thaw cycles, water migration, dry density

中图分类号: 

  • TU 445
[1] 高峰, 曹善鹏, 熊信, 周科平, 朱龙胤, . 冻融循环作用下受荷青砂岩的脆性演化特征[J]. 岩土力学, 2020, 41(2): 445-452.
[2] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[3] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[4] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[5] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[6] 吴二鲁, 朱俊高, 郭万里, 陆阳洋. 基于级配方程的粗粒料压实特性试验研究[J]. 岩土力学, 2020, 41(1): 214-220.
[7] 丑亚玲, 黄守洋, 孙丽源, 王莉杰, 岳国栋, 曹伟, 盛煜, . 基于冻融作用的氯盐渍土−钢块界面力学模型[J]. 岩土力学, 2019, 40(S1): 41-52.
[8] 李杰林, 朱龙胤, 周科平, 刘汉文, 曹善鹏, . 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532.
[9] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[10] 王震, 朱珍德, 陈会官, 朱姝, . 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 40(7): 2608-2616.
[11] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[12] 高 峰, 熊 信, 周科平, 李杰林, 史文超, . 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(3): 926-932.
[13] 胡田飞, 刘建坤, 王天亮, 岳祖润, . 粉质黏土变形特性的冻融循环效应及其双屈 服面本构模型[J]. 岩土力学, 2019, 40(3): 987-997.
[14] 郑广辉, 许金余, 王 鹏, 方新宇, 王佩玺, 闻 名, . 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学, 2019, 40(2): 632-641.
[15] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 李荣涛. 一种高温下混凝土化学塑性-损伤耦合本构模型[J]. , 2010, 31(5): 1585 -1591 .
[4] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[5] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[6] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[7] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[8] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[9] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[10] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .