›› 2015, Vol. 36 ›› Issue (8): 2169-2176.doi: 10.16285/j.rsm.2015.08.006

• 基础理论与实验研究 • 上一篇    下一篇

粉煤灰增强回填碱渣工程特性的试验研究

冀国栋1,杨春和1, 2,刘 伟2,左江江1,雷光伟1   

  1. 1.重庆大学 西南资源开发及环境灾害控制工程教育部重点实验室,重庆 400044; 2.中国科学院武汉岩土力学所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2014-03-06 出版日期:2015-08-11 发布日期:2018-06-13
  • 作者简介:冀国栋,男,1988年生,博士研究生,主要从事工业废弃物在地下空间的处置方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51304187)

An experimental study on the engineering properties of backfilled alkali wastes reinforced by fly ash

JI Guo-dong1, YANG Chun-he1, 2, LIU Wei2, ZUO Jiang-jiang1, LEI Guang-wei1   

  1. 1. Key Laboratory for Exploitation of Southwestern Resources and Environmental Disaster Control Engineering of Ministry of Education, Chongqing University, Chongqing 400044, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2014-03-06 Online:2015-08-11 Published:2018-06-13

摘要: 碱渣与饱和卤水混合制成浆体回填到盐矿废弃盐腔可同时解决碱渣处理问题和地下废弃盐腔存在的地质隐患。回填碱渣强度是影响充填效果的重要因素。因此,为了提高回填碱渣强度,采用掺入粉煤灰制成复合碱渣对其强度特性进行改良。针对不同粉煤灰掺合比的碱渣开展了组成、力学和细观试验。研究结果表明:(1)掺入粉煤灰能明显改善碱渣的强度,使其黏聚力、内摩擦角都大幅提高,抗剪强度大幅增加;(2)粉煤灰掺合比越大,增强效果越明显,但强度并非随掺合比呈线性变化,对黏聚力而言,在0~20%内的掺合比下增加速度最快,而对内摩擦角则在20%~30%的掺合比区间增加最快,对抗剪强度而言,0~20%的掺合比内增加最明显;(3)粉煤灰掺入还可显著改善碱渣的压缩固结特性,使其固结系数大幅提高,从而提高碱渣固结速度,缩短充填工期,其中在0~10%的掺合比内对压缩固结特性改善最显著;(4)矿物组成分析表明,粉煤灰掺入改变了矿物组成,使得亲水性矿物含量急剧锐减,进而改变了其沉积特性。而细观分析则表明,粉煤灰掺入使碱渣从絮凝团细观结构变成了粉煤灰充当骨架的充填结构,且粒间支撑和拉联效应明显。从增强效果提高、压缩固结特性增强、控制成本和工期综合分析表明,最优掺合比为20%左右,建议工程中以不高于20%的掺合比作为实用掺合比即可取得较为理想的充填增强效果。该研究为揭示碱渣增强机制及废弃盐腔碱渣充填工艺优化提供了有益参考。

关键词: 碱渣, 粉煤灰, 回填, 抗剪强度, 固结, 最优掺合比

Abstract: The backfill of mixed slurry consisting of alkali wastes with saturated brine into abandoned salt cavern can simultaneously resolve the problems of alkali treatment and the potential geology disaster of abandoned salt caverns. The strength of the backfilled alkali wastes is a key parameter which affects the filling effect. In order to improve the strength of the backfilled alkali wastes, fly ash is used to make compound alkali. A series of mineral analysis, strength experiments and mesoscale testing have been conducted to determine the properties of the compound alkali wastes, showing that: (1) The mixing of fly ash can effectively reinforce the alkali wastes, resulting in the increases in the cohesion, the internal frictional angle and the shear strength; (2) The larger the mixing ratio of the fly ash, the stronger the reinforcing effect is; whereas, the strength increases nonlinearly with the increment of mixing ratio. For cohesion, its maximum increasing speed locates in the mixing ratio range of 0-20%; for internal frictional angle, it is in the mixing ratio range of 20-30%; and for shear strength, the maximum increasing speed locates in the mixing ratio range of 0-20%; (3) The mixing of fly ash can significantly improve the compression consolidation properties, inducing an increase in consolidation coefficient, thus the project time of backfill will greatly be reduced; the mixing ratio of 0-10% is most suited to the improvement of consolidation; (4) By mineralogical analysis, it is shown that the mixing of fly ash can change the components of the alkali wastes, significantly reducing the content of the hydrophilia minerals and changing the sedimentary properties. The meso-scale analysis shows that, owing to fly ash mixed into alkali wastes, the flocculation structure of initial alkali wastes changes into the filling structure where the fly ash acts as main skeleton, in this structure the supporting and connecting effects between particles are also more obvious. Comprehensive analysis shows that the mixing ratio of 20% is the optimal ratio in terms of the improving strength, enhancing consolidation effect, shortening project period as well as saving cost. A value less than 20% is recommended for the practical mixing ratio in practice. The research results provide a good reference for revealing reinforcing mechanism of alkali wastes, as well as optimizing technologies for salt cavern backfill.

Key words: alkali wastes, fly ash, backfill, shear strength, consolidation, optimal blend ratio

中图分类号: 

  • TU 411
[1] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[2] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[3] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[4] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[5] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[6] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[7] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[8] 张雷, 王宁伟, 景立平, 方晨, 董瑞, . 电渗排水固结中电极材料的对比试验[J]. 岩土力学, 2019, 40(9): 3493-3501.
[9] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[10] 邱金伟, 蒲诃夫, 陈训龙, 吕伟东, 李磊. 污染泥堆场处置中自重固结 与污染物迁移的耦合分析[J]. 岩土力学, 2019, 40(8): 3090-3098.
[11] 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114.
[12] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[13] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[14] 李称, 吴文兵, 梅国雄, 宗梦繁, 梁荣柱, . 不同排水条件下城市固废一维降解固结解析解[J]. 岩土力学, 2019, 40(8): 3071-3080.
[15] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[3] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[4] 孔祥兴,夏才初,仇玉良,张丽英,龚建伍. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. , 2011, 32(2): 516 -524 .
[5] 王振红,朱岳明,武圈怀,张宇惠. 混凝土热学参数试验与反分析研究[J]. , 2009, 30(6): 1821 -1825 .
[6] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[7] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[8] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[9] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .
[10] 王 宇 ,贾志刚 ,李 晓 ,汪 灿 ,余宏明 . 边坡模糊随机可靠性分析的模糊点估计法[J]. , 2012, 33(6): 1795 -1800 .