›› 2015, Vol. 36 ›› Issue (8): 2386-2394.doi: 10.16285/j.rsm.2015.08.035

• 岩土工程研究 • 上一篇    下一篇

深覆盖层上面板堆石坝应力变形特性研究

温立峰1,柴军瑞1, 2,王 晓1   

  1. 1.西安理工大学 西北旱区生态水利工程国家重点实验室培育基地,陕西 西安 710048;2.三峡大学 水利与环境学院,湖北 宜昌 443002
  • 收稿日期:2014-03-07 出版日期:2015-08-11 发布日期:2018-06-13
  • 通讯作者: 柴军瑞,男,1968年生,博士,教授,主要从事水工结构和岩土体水力学方面的研究工作。E-mail: jrchai@xaut.edu.cn E-mail:wenxuan89@126.com
  • 作者简介:温立峰,男,1989年生,博士研究生,主要从事水工结构数值仿真方面的研究工作。
  • 基金资助:
    陕西省重点科技创新团队(No. 2013KCT-015);国家自然科学基金(No. 51409206,No. 51409208);陕西省教育厅专项科研计划项目(No. 14JK1548)。

Stress-deformation behavior of a concrete-faced rockfill dam with a deep overburden foundation

WEN Li-feng1, CHAI Jun-rui1, 2, WANG Xiao1   

  1. 1. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 2. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2014-03-07 Online:2015-08-11 Published:2018-06-13

摘要: 结合实测资料和有限元方法分析建于深覆盖层地基上面板堆石坝的应力、变形特性。数值计算中采用邓肯-张E-B模型模拟覆盖层地基和坝体的应力、变形行为,同时采用无厚度接触面模拟面板和坝体以及防渗墙和地基之间的相互作用。整理和分析工程实测资料并与数值计算结果进行对比分析,重点分析坝体和防渗结构的力学行为以及面板堆石坝和地基之间的相互作用。比较分析表明,大坝最大沉降和压应力分别发生在坝体底部和覆盖层中,覆盖层对坝体及防渗结构的应力、变形特性具有显著影响,应力、变形实测值与数值计算结果吻合较好,说明数值计算结果的有效性。在此基础上,分析了覆盖层上面板堆石坝分期填筑和筑坝速度对坝体和防渗结构应力变形的影响。结果表明,分期填筑引起坝体较大不均匀沉降和复杂的应力状态,但一定程度上可以改善防渗墙的应力变形特性;较快的坝体填筑速度容易引起坝体较大的前期应力和后期沉降,不利坝体的施工和运行。

关键词: 面板堆石坝, 应力变形, 监测, 有限元分析, 覆盖层

Abstract: Stress-deformation behaviour of a concrete-faced rockfill dam (CFRD) built on sand and gravel foundation is studied based on the in situ monitoring results and finite element analysis (FEA). The mechanical behaviour of the dam body and its impervious structures is investigated and the interaction between the CFRD and the overburden foundation is analyzed. Three-dimensional FEA is performed, with introducing the Duncan-Chang E-B model for gravel and rockfill and the Lagrange method for the interface, to evaluate the stress-deformation behaviour of the CFRD at the construction and filling stages of the reservoir. Comparative analysis shows that the maximum settlement occurred at the bottom height of the dam instead of the middle height and the maximum compressive stress distributed in the overburden. The overburden foundation has a significant effect on the stress-deformation behaviour of the dam body and impervious structures. The stress and deformation values computed using the FEA model are found to be consistent with the measured data for the construction stage. Numerical simulation is used to analyze the different factors influencing the behaviour of the dam body and cut-off wall. The results show that the staged-filling of the dam body will cause uneven deformation and stress concentration in the dam body, but can improve the stress and deformation behaviour of the cut-off wall to some extent; and the rapid dam construction rate results in a larger prestage stress and post-construction settlement which is not conducive to the construction and operation of the dam.

Key words: concrete-faced rockfill dam, stress-deformation behavior, monitoring, finite element analysis, overburden

中图分类号: 

  • TV 311
[1] 余挺, 邵磊. 含软弱土层的深厚河床覆盖层坝基动力特性研究[J]. 岩土力学, 2020, 41(1): 267-277.
[2] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[3] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[4] 叶观宝, 郑文强, 张 振, . 大面积填土场地中摩擦型桩负摩阻力分布特性研究[J]. 岩土力学, 2019, 40(S1): 440-448.
[5] 李悄, 孟繁增, 牛远志. 压重顶进框构下穿高铁引起桥墩变形及控制技术[J]. 岩土力学, 2019, 40(9): 3618-3624.
[6] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[7] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[8] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[9] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[10] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[11] 侯公羽, 韩育琛, 谢冰冰, 魏广庆, 李子祥, 肖海林, 周天赐, . 定点式布设光纤在隧道结构健康监测中的 预拉应变损失研究 [J]. 岩土力学, 2019, 40(10): 4120-4128.
[12] 刘 勇, 冯 帅, 秦志萌. 基于运动角差的滑坡监测点相似性评判方法[J]. 岩土力学, 2019, 40(1): 288-296.
[13] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[14] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
[15] 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[9] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[10] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .