›› 2015, Vol. 36 ›› Issue (8): 2395-2401.doi: 10.16285/j.rsm.2015.08.036

• 岩土工程研究 • 上一篇    下一篇

微型抗滑桩单桩设计计算模型及算法研究

王金梅1,张迎宾1, 2, 3,赵兴权1, 2   

  1. 1.西南交通大学 土木工程学院,四川 成都 610031;2.西南交通大学,交通隧道工程教育部重点实验室,四川 成都 610031; 3.成都理工大学,地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2015-02-03 出版日期:2015-08-11 发布日期:2018-06-13
  • 通讯作者: 张迎宾,男,1983年生,博士,副教授,主要从事DDA、NMM程序开发和应用方面的研究工作。E-mail:yingbinz516@126.com E-mail:wangjinmei_xyz@163.com
  • 作者简介:王金梅,女,1988年生,博士研究生,主要从事岩土工程和数值分析方法的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51408511);国家重点实验室开放基金资助项目(No. SKLGP2014015)

Calculation model and algorithm for designing single anti-slide micropile

WANG Jin-mei1, ZHANG Ying-bin1, 2, 3, ZHAO John X1, 2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2015-02-03 Online:2015-08-11 Published:2018-06-13

摘要: 考虑微型桩与周围岩土体间摩擦力的作用,提出了一种新的微型抗滑桩单桩设计计算模型,并给出了具体算法。由微型桩加固滑坡体的变形特点,分析微型桩与岩土体之间的相互作用机制,将微型桩与周围岩土体的摩擦作用引入其受力分析中;根据微型桩上各部分受力特点的不同,将微型桩分成上部摩擦受拉段、中部滑坡推力作用段和下部锚固段3段进行分析,推导了微型桩总的变形控制方程及各分段的变形控制方程;采用初参数法对控制方程进行求解,得到了微型抗滑桩上的内力分布及变形规律。计算结果表明,在滑坡推力作用下,微型桩的变形主要发生在滑面附近及以上桩段,滑面附近桩段将产生较大的内力和弯曲变形,受拉段弯曲变形较小,近似水平移动;桩与岩土体间的摩擦力是微型桩与周围岩土体相互作用的重要组成部分,摩擦力的作用能显著减小微型桩的弯曲变形,有效控制滑坡体的位移。

关键词: 微型桩, 摩擦力, 滑坡, 边坡加固, 计算模型, 初参数法

Abstract: With considering the friction between a micropile and the surrounding soil mass, a new design calculation model of single anti-slide micropile is developed; and a detailed calculation algorithm is presented. Based on the deformation characteristics of micropile in reinforcing a slope, the interaction mechanism between the micropile and the surrounding soil mass is analyzed, and the friction between the micropile and the soil mass is introduced into the force analysis of single anti-slide micropile. According to the different loading distributions along different parts of the micropile, the micropile is divided into three parts along its length, namely, the friction part, the landslide thrust part and the anchoring part. The governing equations for the deformation of different sections of the micropile are derived. The governing equations are solved by using the initial parameter method, and the internal force distribution and deformation characteristics are determined. The calculated results show that, under the action of a landslide thrust, the deformation of micropile mainly occurs near the sliding surface and the upper parts of the pile. The internal force and bending deformations near the sliding surface are larger than those at the other parts of the micropile. Along the friction part of the micropile, the bending deformation is small, and the relatively small bending deformation leads to nearly horizontal movement of the micropile. The friction is an important part of the interaction between micropiles and the surrounding soil mass, and it can significantly reduce the bending deformation of the micropile, so that the landslide displacement can be effectively controlled.

Key words: micropile, friction, landslide, slope reinforcement, calculation model, initial parameter method

中图分类号: 

  • TU 473
[1] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
[2] 于一帆, 王平, 王会娟, 许书雅, 郭海涛, . 堆积层滑坡地震动力响应的物理模型试验[J]. 岩土力学, 2019, 40(S1): 172-180.
[3] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[4] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[5] 黄晓虎, 雷德鑫, 夏俊宝, 易武, 张鹏, . 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3585-3592.
[6] 邓茂林, 易庆林, 韩蓓, 周剑, 李卓骏, 张富灵, . 长江三峡库区木鱼包滑坡地表变形规律分析[J]. 岩土力学, 2019, 40(8): 3145-3152.
[7] 余国, 谢谟文, 胡庆忠, 靳玉鹏, . 基于GIS的库岸滑坡滑速计算方法[J]. 岩土力学, 2019, 40(7): 2781-2788.
[8] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[9] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[10] 杨宗佶, 蔡 焕, 雷小芹, 王礼勇, 丁朋朋, 乔建平, . 非饱和地震滑坡堆积体降雨破坏水-力 耦合行为试验[J]. 岩土力学, 2019, 40(5): 1869-1880.
[11] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[12] 张业勤, 陈保国, 孟庆达, 徐昕, . 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40(12): 4813-4818.
[13] 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906.
[14] 张龙飞, 吴益平, 苗发盛, 李麟玮, 康田. 推移式缓倾浅层滑坡渐进破坏力学模型 与稳定性分析[J]. 岩土力学, 2019, 40(12): 4767-4776.
[15] 江强强, 焦玉勇, 宋亮, 王浩, 谢壁婷, . 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学, 2019, 40(11): 4361-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[2] 刘豆豆,陈卫忠,杨建平,谭贤君,周喜德. 脆性岩石卸围压强度特性试验研究[J]. , 2009, 30(9): 2588 -2594 .
[3] 王桂尧,李 斌,罗 军,付宏渊. 粉土基质吸力的新型量测装置与土-水特征研究[J]. , 2010, 31(11): 3678 -3682 .
[4] 卢应发,陈朱蕾,谢文良,吕志中. 垃圾卫生填埋中的一些岩土工程技术[J]. , 2009, 30(1): 91 -98 .
[5] 王志萍,胡敏云,夏玲涛. 垃圾填土压缩特性的室内试验研究[J]. , 2009, 30(6): 1681 -1686 .
[6] 贾 强,应惠清,张 鑫. 锚杆静压桩技术在既有建筑物增设地下空间中的应用[J]. , 2009, 30(7): 2053 -2057 .
[7] 路军富,王明年,贾媛媛,喻 渝,谭忠盛. 高速铁路大断面黄土隧道二次衬砌施作时机研究[J]. , 2011, 32(3): 843 -848 .
[8] 方 焘 ,刘新荣 ,耿大新 ,罗 照 ,纪孝团 ,郑明新 . 大直径变径桩竖向承载特性模型试验研究(I)[J]. , 2012, 33(10): 2947 -2952 .
[9] 胡万雨 ,陈向浩 ,林 江 ,况磊强 . 瀑布沟水电站砾石土心墙初次蓄水期原位钻孔渗流试验研究[J]. , 2013, 34(5): 1259 -1263 .
[10] 朱 星 ,许 强 ,汤明高 ,付小敏 ,周建斌 . 典型岩石破裂产生次声波试验研究[J]. , 2013, 34(5): 1306 -1312 .