›› 2015, Vol. 36 ›› Issue (12): 3381-3386.doi: 10.16285/j.rsm.2015.12.006

• 基础理论与实验研究 • 上一篇    下一篇

岩石结构面粗糙度系数尺寸效应的推拉试验研究

罗战友1, 2,杜时贵2,黄 曼2   

  1. 1.浙江科技学院 岩土工程研究所,浙江 杭州 310023;2.绍兴文理学院 土木工程学院,浙江 绍兴 312000
  • 收稿日期:2014-11-05 出版日期:2015-12-11 发布日期:2018-06-14
  • 作者简介:罗战友,男,1974年生,博士后,教授,主要从事岩体结构面粗糙度系数、抗剪强度及桩基工程等方面的教学与研究工作。
  • 基金资助:

    国家自然科学基金(No.41572299;No.41427802;No.41302257;No.41172292);教育部新世纪优秀人才支持计划资助项目(No. NCET- 11-1080);浙江省新世纪151人才第一层次(No. 12-1-076);浙江省自然科学基金(No. LZ13D020001,No. LQ13D020001)

An experimental study of size effect of roughness coefficient on rock joint using push-pull apparatus

LUO Zhan-you1, 2, DU Shi-gui2, HUANG Man2   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; 2. School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2014-11-05 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant No. 41572299,41427802,41302257 and 41172292), Planning Project for New Century Excellent Talents by Ministry of Education (Grant No. NCET-11-1080),The First Level of New Century 151 Talents Project in Zhejiang Province(Grant No. 12-1-076) and Natural Science Foundation of Zhejiang Province(Grant No. LZ13D020001 and LQ13D020001).

摘要: 粗糙度系数是结构面抗剪强度的主要影响因素,然而由于结构面表面形态的复杂性,粗糙度系数尺寸效应研究并未获得较大进展。总结了结构面粗糙度系数的3种获取手段:标准剖面对比法、理论公式法、试验反分析法。在此基础上分析了3种方法在研究粗糙度系数尺寸效应方面存在的问题和困难。为了研究结构面粗糙度系数与试样尺寸的相关度,对中砂、硅粉、水泥、非引气型萘系减水剂等原材料的配比进行了研究,获得了与天然钙质板岩物理力学特性相类似的岩石模型材料,然后采用研发的结构面制作模具及其制备工艺制作了8组共176对具有不同尺寸和表面起伏粗糙程度的结构面,并利用改进的高精度岩石结构面推拉仪对结构面粗糙度系数进行了推拉试验研究和数据统计分析,结果表明:模型结构面粗糙度系数的统计均值随试样尺寸的增加而降低,但特定结构面粗糙度系数的尺寸效应规律需要根据结构面的具体表面形貌进行测试;Barton理论公式计算的结构面粗糙度系数尺寸效应变化规律与推拉试验测试规律总体上一致,但试验值与理论值有差异,且结构面试样尺寸越小,二者的差异就越大;具有特定表面形貌的模型结构面粗糙度系数也有差异,工程大尺寸岩体结构面粗糙度系数需要根据表面形貌和分布特征进行综合判定。

关键词: 岩石结构面, 粗糙度系数, 尺寸效应, 推拉试验

Abstract: The roughness coefficient is an important influencing factor of the joint shear strength. However, the research of size effect on joint roughness coefficient has not gained great progress due to surface morphology complexity of rock joint. This paper summarizes three methods to obtain joint roughness coefficient, i.e. standard profile comparison method, theoretical equation method and inverse analysis method, and then analyzes some existing problems and difficulties on studying size effect on joint roughness coefficient. In order to achieve the relationship between joint roughness coefficient and sample size, the ratios of raw materials such as medium sand, silica fume, cement, non-air entraining naphthalene super-plasticizer, are firstly investigated. Then rock materials for simulation are obtained, in which physico-mechanical properties are similar to calcareous slate. Finally, eight groups of rock joints with 176 pairs of different sizes and roughness are made through molds in preparation process. In addition, the roughness coefficients of rock joints are tested by homemade push-pull shear apparatus and experimental data are further analyzed. The results show that statistical mean values of joint roughness coefficient generally decrease with the increase of sample size. However, the size effect tests on the specific rock joints need to be performed through push-pull shear strength testing method. It is found that size effect variations calculated by Barton formula are in good agreement with experimental results, whereas the theoretical and experimental values are different. In particular, when the size of sample is smaller, the differences are greater. Furthermore, rock roughness coefficients even with specific joint surfaces are various and the roughness coefficients of large size rock joint should be comprehensively judged according to the surface morphology and distribution.

Key words: rock joint, joint roughness coefficient, size effect, push-pull shear test

中图分类号: 

  • TU 45
[1] 周梦佳, 温彦锋, 邓刚, 王蕴嘉, 宋二祥, . 堆石料单颗粒劈裂试验破碎强度随机性与 尺寸效应的三维离散元模拟[J]. 岩土力学, 2019, 40(S1): 503-510.
[2] 杨圣奇,陆家炜,田文岭,唐劲舟,. 不同节理粗糙度类岩石材料三轴压缩力学特性试验研究[J]. , 2018, 39(S1): 21-32.
[3] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
[4] 李 杨,佘成学. 堆石料单粒强度尺寸效应的颗粒流模拟方法研究[J]. , 2018, 39(8): 2951-2959.
[5] 宿 辉, 杨家琦, 胡宝文, 高 轩, 马 辉, . 颗粒离散元岩石模型的颗粒尺寸效应研究[J]. 岩土力学, 2018, 39(12): 4642-4651.
[6] 薛 晨,符文熹,何思明,. 组装式变尺寸直剪仪的研制[J]. , 2018, 39(10): 3907-3914.
[7] 周海娟,马 刚,袁 葳,周 伟,常晓林, . 堆石颗粒压缩破碎强度的尺寸效应[J]. , 2017, 38(8): 2425-2433.
[8] 宋磊博,江 权,李元辉,杨成祥,钟 山,张妹珠,. 不同采样间隔下结构面形貌特征和各向异性特征的统计参数稳定性研究[J]. , 2017, 38(4): 1121-1132.
[9] 宋磊博,江 权,李元辉,杨成祥,冉曙光,王百林,刘 挺,. 基于剪切行为结构面形貌特征的描述[J]. , 2017, 38(2): 525-533.
[10] 王昌硕,王亮清,葛云峰,梁 烨,孙自豪,董曼曼,张 楠. 基于统计参数的二维节理粗糙度系数非线性确定方法[J]. , 2017, 38(2): 565-573.
[11] 张玉成,杨光华,胡海英,刘翔宇,骆以道,姜 燕, . 载荷试验尺寸效应及地基承载力确定方法探讨[J]. , 2016, 37(S2): 263-272.
[12] 王洪新. 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. , 2016, 37(S2): 433-441.
[13] 王青元 ,朱万成 ,刘洪磊 ,牛雷雷 ,李如飞 , . 单轴压缩下绿砂岩长期强度的尺寸效应研究[J]. , 2016, 37(4): 981-990.
[14] 梁昌玉,李 晓,吴树仁,. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. , 2016, 37(12): 3472-3480.
[15] 万 勇 ,薛 强 ,赵立业 ,杜延军 ,刘 磊,. 干湿循环对填埋场压实黏土盖层渗透系数影响研究[J]. , 2015, 36(3): 679-686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 朱建明,彭新坡,姚仰平,徐金海. SMP准则在计算煤柱极限强度中的应用[J]. , 2010, 31(9): 2987 -2990 .
[5] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[6] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[7] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[8] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[9] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[10] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .