›› 2015, Vol. 36 ›› Issue (12): 3639-3648.doi: 10.16285/j.rsm.2015.12.038

• 数值分析 • 上一篇    

页岩水平井多段分簇压裂起裂压力数值模拟

潘林华1, 2, 3,程礼军1, 2, 3,张 烨1, 2, 3,张士诚4,王 飞1, 2, 3   

  1. 1.重庆地质矿产研究院 国土资源部页岩气资源勘查重点实验室,重庆 400042; 2.重庆地质矿产研究院 重庆市页岩气资源与勘查工程技术研究中心,重庆 400042; 3.油气资源与探测国家重点实验室 重庆页岩气研究中心,重庆 400042;4.中国石油大学(北京) 石油工程学院,北京 102249
  • 收稿日期:2014-05-04 出版日期:2015-12-11 发布日期:2018-06-14
  • 作者简介:潘林华,男,1982年生,博士,高级工程师,主要从事页岩岩石力学、地应力和压裂裂缝起裂和扩展等方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 51304258);重庆市科委自然科学重点项目(No. cstc2013jjB90005);国家高技术研究发展计划“863计划”页岩气勘探开发新技术(No. 2013AA064503)。

Numerical simulation of fracturing pressure in multiple clusters staged hydraulic fracture of shale horizontal well

PAN Lin-hua1, 2, 3, CHENG Li-jun1, 2, 3, ZHANG Ye1, 2, 3, ZHANG Shi-cheng4, WANG Fei1, 2, 3   

  1. 1. Key Laboratory of Shale Gas Exploration of Ministry of Land and Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 2. Chongqing Engineering Research Center for Shale Gas Resources & Exploration, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China; 3. Chongqing Shale Gas Research Center of State Key Laboratory of Petroleum Resources and Prospecting, Chongqing 400042, China; 4. Faculty of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China;
  • Received:2014-05-04 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant No. 51304258), Natural Science Foundation Project of CQ CSTC (Grant No. cstc2013jjB90005) and National High-tech R&D Program of China (863 Program) (Grant No. 2013AA064503).

摘要: 页岩储层孔隙度和渗透率极低,天然裂缝和水平层理发育,常规压裂增产措施无法满足页岩气的开发要求,水平井多段分簇压裂是页岩气开发的关键技术之一,该技术能够大幅度提升压裂改造的体积、产气量和最终采收率。为确定页岩储层水平井多段分簇射孔压裂的起裂点和起裂压力,采用有限元方法建立了水平井套管完井(考虑水泥环和套管的存在)多段分簇射孔的全三维起裂模型。数值模型的起裂压力与室内试验结果吻合较好,证明了数值模型的准确性和可靠性。利用数值模型研究了页岩水平井多段分簇射孔压裂的起裂点和起裂压力的影响因素,研究发现:射孔孔眼附近无天然裂缝或水平层理影响,起裂点发生在射孔簇孔眼的根部;射孔簇间距越小,中间射孔簇的干扰越大,可能造成中间的射孔簇无法起裂;射孔密度和孔眼长度增大,起裂压力降低;天然裂缝的存在,在某些情况能够降低起裂压力且改变起裂位置,主要与天然裂缝的分布方位及水平主应力差有关;水平层理可能会降低起裂压力,但与垂向主应力与水平最小主应力的差值有关。获得的起裂压力变化规律,可作为进一步研究水平井多段分簇射孔条件下的裂缝扩展规律的基础,可以为压裂设计和施工的射孔参数确定及优化给出具体建议。

关键词: 页岩, 水平井, 多段分簇, 射孔, 起裂压力, 有限元法, 套管完井

Abstract: General fracturing techniques are extremely difficult to satisfy requirements of the development of shale gas, due to the highly low porosity and permeability and well developed natural fractures and horizontal beddings in shale reservoirs. Therefore, one of and key technologies is the multiple clusters staged hydraulic fracture of horizontal well, which can greatly increase the stimulation volume, the production rate of gas and final recovery efficiency. In order to locate the fracturing point and fracturing pressure of multiple clusters staged horizontal well of shale gas reservoir, a three-dimensional breaking model of multiple clusters staged horizontal well is established with finite element method, which considers cement mantle and casing. Comparing the simulation results with laboratory experiment of fracturing pressure, the good agreement indicates that the numerical model is reliable and validity. This paper further studies the effect of parameters on fracturing points and fracturing pressure of multiple perforation clusters within multi-stage hydraulic fracturing in shale gas horizontal well using the simulation model. The research results show that fracturing points are found near the roots of perforation clusters, when there is no influence of natural fractures and horizontal bedding plane around perforations. The smaller perforation cluster spacing is, the greater interference between perforation clusters is, which may induce that the perforations cluster in the middle is unable to fracture. Moreover, the fracturing pressure is reduced with the increase of perforation density and perforation length. The existence of natural fracture can reduce the fracturing pressure and change the fracturing initiation position under certain circumstance, mainly depending on the natural fracture distribution and orientation and horizontal principle stress difference. In addition, the bedding plane may reduce the fracturing pressure, but relating to the difference between vertical principal stress and minimum horizontal principal stress. The regularity of fracturing pressure can provide basis for further research on the fracture propagation in multiple clusters staged horizontal well of shale gas reservoir. This study also offer concrete advises on perforating parameters in hydraulic fracture design and hydraulic operation in shale gas reservoir.

Key words: shale gas, horizontal well, multiple clusters staged, perforation, fracturing pressure, finite element method, cased completion

中图分类号: 

  • TU 318
[1] 修乃岭, 严玉忠, 胥云, 王欣, 管保山, 王臻, 梁天成, 付海峰, 田国荣, 蒙传幼, . 基于非达西流动的自支撑剪切裂缝导流 能力实验研究[J]. 岩土力学, 2019, 40(S1): 135-142.
[2] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[3] 曹洪, 胡瑶, 骆冠勇. 滤管两端均不在含水层层面的承压不 完整井近似计算方法研究[J]. 岩土力学, 2019, 40(7): 2774-2780.
[4] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[5] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[6] 纪国法, 李奎东, 张公社, 李少明, 张 蕾, 刘 炜, . 页岩I型断裂韧性的分形计算方法与应用[J]. 岩土力学, 2019, 40(5): 1925-1931.
[7] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[8] 郑安兴, 罗先启, 陈振华, . 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学, 2019, 40(2): 799-808.
[9] 王冬勇, 陈曦, 于玉贞, 吕彦楠, . 基于二阶锥规划有限元增量加载法的条形浅基础极限承载力分析[J]. 岩土力学, 2019, 40(12): 4890-4896.
[10] 董卓, 唐世斌, . 基于最大周向应变断裂准则 定向射孔水力裂缝扩展研究[J]. 岩土力学, 2019, 40(11): 4543-4553.
[11] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[12] 赵子江,刘大安,崔振东,唐铁吾,韩伟歌,. 半圆盘三点弯曲法测定页岩断裂韧度(KIC) 的实验研究[J]. , 2018, 39(S1): 258-266.
[13] 梁天成,刘云志,付海峰,严玉忠,修乃岭,王 臻. 多级循环泵注水力压裂模拟实验研究[J]. , 2018, 39(S1): 355-361.
[14] 王志荣,贺 平,郭志伟,王永春. 考虑裂缝特性指标的煤层气“垂直井”起裂压力计算方法[J]. , 2018, 39(S1): 369-377.
[15] 唐建新,腾俊洋,张 闯,刘 姝, . 层状含水页岩蠕变特性试验研究[J]. , 2018, 39(S1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 谷拴成,苏培莉,王建文,王宏科. 烧变岩体特性及其注浆扩散行为研究[J]. , 2009, 30(S2): 60 -63 .
[7] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[8] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[9] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .