›› 2016, Vol. 37 ›› Issue (1): 33-40.doi: 10.16285/j.rsm.2016.01.004

• 基础理论与实验研究 • 上一篇    下一篇

考虑颗粒破碎对特征孔隙比影响的堆石体亚塑性本构模型

明华军1,孙开畅1,徐小峰1,史存鹏2   

  1. 1. 三峡大学 水利与环境学院,湖北 宜昌,443002;2. 长江三峡勘测研究院有限公司(武汉),湖北 武汉 430074
  • 收稿日期:2014-12-22 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:明华军,男,1984年生,博士,讲师,主要从事颗粒材料力学特性及本构模型方面的研究工作。
  • 基金资助:

    长江科学院开放研究基金资助项目(No.CKWV2013208/KY);三峡大学科学基金(No.KJ2012B032)。

A hypoplastic constitutive model for rockfill materials considering the influence of particle breakage on representative void ratio

MING Hua-jun1, SUN Kai-chang1, XU Xiao-feng1, SHI Cun-peng2   

  1. 1. College of Hydraulic and Environmental Engineering, China Three Gorges Univeristy, Yichang, Hubei, 443002, China; 2. Three Gorges Geotechnical Consultants Co., Ltd., Wuhan, Hubei 430073, China
  • Received:2014-12-22 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was funded by CRSRI Open Research Program (CKWV2013208/KY) and Science Foundation of China Three Gorges University ( KJ2012B032).

摘要: 颗粒破碎是影响堆石体强度和变形特性的主要问题之一。相比于砂土,堆石料在较低的应力水平下就会发生严重的颗粒破碎,因此,在进行堆石体力学特性及本构模型研究时必须考虑颗粒破碎的影响。同时,堆石体在受力过程中孔隙比是变化的,而传统本构模型不能使用一组参数模拟不同孔隙比的同种材料。因此,以能够考虑应力水平和土体孔隙比影响的Gudehus-Bauer亚塑性本构模型为基础,考虑堆石体有别于砂土的孔隙比变化特征,提出了考虑堆石破碎的亚塑性本构模型。亚塑性理论是目前可最大限度地减少人为假定的一种本构理论,颗粒材料在不同特征应力路径下,破碎造成的过度变形量不同;但相同应力水平、不同特征应力路径下孔隙比已不满足Gudehus-Bauer亚塑性本构模型中提出的等比例变化规律。据此,结合考虑颗粒破碎的临界状态理论和堆石体常规三轴试验和循环加载试验结果,提出了考虑颗粒破碎堆石体特征孔隙比的表达式,并将其引入到Gudehus-Bauer亚塑性本构模型中,建立了考虑颗粒破碎的堆石体亚塑性本构模型,提出了模型参数的确定方法。与堆石体试验结果对比表明,该本构模型可以较好地模拟其力学与变形特性。

关键词: 颗粒破碎, 亚塑性, 堆石体, 本构模型, 特征孔隙比

Abstract: Particle breakage is one of the major factors to affect the strength and deformation characteristics of rockfill materials. Particle breakage of rockfill materials is more obvious at low stress level in comparison with sands, Thus, the effects of particle breakage on mechanical characteristics and constitutive model of rockfill materials need to be considered. Since the void ratio of rockfill materials is not constant during the loading process, the traditional constitutive model, which cannot use a set of parameters to simulate the same rockfill with different void ratios, is not suitable. Therefore, it is necessary to develop a hypoplastic constitutive model of rockfill materials, which incorporates the representative void ratio expressions and particle breakage. Meanwhile, this model is based on Gudehus-Bauer hypoplastic constitutive model, which can consider the different characteristics of the void ratio between rockfill and sand. Particularly, the hypoplastic constitutive theory has the least assumption. Under different representative stress paths, the strain increments of granular materials are various. However, under different representative stress paths even with the same level of stress, the representative void ratio of rockfill is difficult to satisfy the equal proportion rule that is successfully used in the Gudehus-Bauer hypoplastic constitutive model for sand. Therefore, a series of the representative void ratio expressions incorporating particle breakage is proposed based on both the particle breakage critical state theory and experimental results. Subsequently, these expressions are introduced into Gudehus-Bauer hypoplastic constitutive model to establish a hypoplastic constitutive model of rockfill materials incorporating particle breakage. In addition, the method to determine the parameters of model is provided. Finally, the constitutive model is applied to simulate the test results of rockfill materials in the literature, which indicates that the proposed constitutive model can well simulate the stress-strain behaviuors of rockfill materials.

Key words: particle breakage, hypoplasticity, rockfill materials, constitutive model, representative void ratio

中图分类号: 

  • TU 443

[1] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[2] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[3] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[4] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[5] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[6] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[7] 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418.
[8] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[9] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[10] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[11] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[12] 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90.
[13] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[14] 张超, 杨期君, 曹文贵. 考虑峰值后区应力跌落速率的 脆岩损伤本构模型研究[J]. 岩土力学, 2019, 40(8): 3099-3106.
[15] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!