›› 2016, Vol. 37 ›› Issue (1): 113-118.doi: 10.16285/j.rsm.2016.01.013

• 基础理论与实验研究 • 上一篇    下一篇

半无限弹性体内作用竖向矩形和条形均布荷载时的应力计算公式

王洪新   

  1. 上海城建市政工程(集团)有限公司,上海 200065
  • 收稿日期:2014-06-05 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:王洪新,男,1973年生,博士,高级工程师,主要从事基坑工程、盾构法隧道及土力学基础理论方面的研究工作

Equations for calculating stresses in a semi-infinite elastic solid subjecting to a vertical rectangular and strip uniform load beneath ground surface

WANG Hong-xin   

  1. Shanghai Urban Construction Municipal Engineering (Group) Co., Ltd., Shanghai 200065, China
  • Received:2014-06-05 Online:2016-01-11 Published:2018-06-09

摘要: 传统土力学处理岩土工程问题时,经常采用弹性力学方法分析土中应力分布。土中应力通常依据较为简单的Boussinesq解计算,该解答假定荷载作用于土体表面;但是,建筑物基础一般都埋置在地表以下一定深度,此时,应依据Mindlin解计算应力分布。在半无限弹性体内作用竖向矩形和条形均布荷载时的应力分布对计算基础沉降以及分析基坑尺寸对稳定性和变形的影响均有重要意义,在其他岩土工程问题中也有诸多应用。尽管文献[1-2]给出了相关计算公式,但存在几处错误。基于Mindlin解,通过积分重新推导了在半无限体内部作用竖向矩形均布荷载时应力分布的解析表达式,进一步得到了条形均布荷载作用时应力分布的解析表达式,这2组公式均与文献[1-2]给出的结果存在不同。最后,采用数值积分方法验证了新给出的2组公式的正确性。

关键词: 半无限体, 竖向均布荷载, 矩形荷载, 条形荷载, 解析解

Abstract: In dealing with geotechnical engineering problems with the traditional soil mechanics, the elastic mechanics approach is often used to calculate the stress distribution in soil. The calculation of the stresses in soil is usually based on simple Boussinesq’s solutions which are derived on the assumption that the loading acts on the ground surface. However, building foundations are generally buried in a certain depth beneath ground surface. In this case, the Mindlin solution is more suitable to calculate the stress distribution. The equations for calculating stresses in a semi-infinite elastic solid subjecting to a vertical rectangular and strip uniform load are significant for many geotechnical problems, such as the calculation of foundation settlement and the analysis of the influence of excavation size on its stability and deformation. Although all the equations have been presented in Reference[1-2] by Yuan Ju-yun, several errors are found in these equations. Based on the Mindlin’s formulas, the calculation equations for calculating stress in the soil subjecting to a vertical rectangular uniform load beneath the surface are derived by the integral method again. Furthermore, the equations for strip load in similar case are deduced, both of which are different from those given in Reference[1-2]. Eventually, the correctness of two groups of formulations is verified by the numerical integration.

Key words: semi-infinite solid, vertical uniform load, rectangular load, strip load, analytic solution

中图分类号: 

  • TU 470

[1] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[2] 朱彦鹏, 严紫豪, 朱轶凡. 微型钢管砂浆复合桩在土体中稳定性计算[J]. 岩土力学, 2020, 41(4): 1339-1346.
[3] 刘国钊, 乔亚飞, 何满潮, 樊勇, . 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学, 2020, 41(3): 923-932.
[4] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[5] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[6] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[7] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[8] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[9] 蒙宇涵, 陈征, 冯健雪, 李红坡, 梅国雄, . 初始孔压非均布下一维地基砂垫层优化研究[J]. 岩土力学, 2019, 40(12): 4793-4800.
[10] 黄朝煊. 塑料排水板处理地基非线性固结计算研究[J]. 岩土力学, 2019, 40(12): 4819-4827.
[11] 吴 纲,孙红月,付崔伟,陈永珍,汤碧辉,. 软土虹吸排水完整井非稳定流模型及解析解[J]. , 2018, 39(9): 3355-3361.
[12] 吉恩跃,朱俊高,余 挺,金 伟,. 橡皮膜嵌入解析解及试验验证[J]. , 2018, 39(8): 2780-2786.
[13] 夏长青,胡安峰,崔 军,吕文晓,谢康和, . 饱和软土成层地基一维非线性固结解析解[J]. , 2018, 39(8): 2858-2864.
[14] 张丙强, 王启云, 卢晓颖, . 软土地层浅埋圆形隧道非达西渗流场解析研究[J]. 岩土力学, 2018, 39(12): 4377-4384.
[15] 汪 磊,李林忠,徐永福,夏小和,孙德安,. 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. , 2018, 39(11): 4142-4148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!