›› 2016, Vol. 37 ›› Issue (1): 133-139.doi: 10.16285/j.rsm.2016.01.016

• 基础理论与实验研究 • 上一篇    下一篇

地震作用下含水平软弱夹层斜坡动力响应特性研究

周 飞1,许 强1,刘汉香1,王 龙2   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059; 2. 四川省交通运输厅交通勘察设计研究院,四川 成都 610017
  • 收稿日期:2014-06-11 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:周飞,男,1988年生,硕士研究生,主要从事岩土体稳定性及工程环境效应方面的研究。
  • 基金资助:

    国家重点基础研究计划(973计划)资助(No. 2013CB733200);国家杰出青年科学基金资助(No. 41225011);长江学者特聘教授岗位资助(No. T2011186)。

An experimental study of dynamic response characteristics of slope with horizontal weak interlayer under earthquake

ZHOU Fei1, XU Qiang1, LIU Han-xiang1, WANG Long2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Sichuan Communication Surveying & Design Institute, Chengdu, Sichuan 610017, China
  • Received:2014-06-11 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Key Basic Research Program of China (973 Program) (2013CB733200), the National Science Fund for Distinguished Young Scholars (41225011) and the Yangtze River Scholars Distinguished Professor (T2011186).

摘要: 基于相似性理论,设计并完成了2个含不同厚度水平软弱夹层的岩质斜坡。试验模型高度、长度、宽度分别为1.80、1.65、1.50 m,坡角约60°,软弱夹层厚分别为3、15 cm。输入不同类型、激励方向、频率和振幅的地震波,利用大型振动台试验中传感器记录的数据和正交试验,研究了斜坡的加速度响应特征及其影响因素。试验结果表明:斜坡动力加速度放大系数分布存在明显的坡内高程效应和坡面的非线性趋表效应。斜坡水平向坡面放大系数随斜坡高程增加呈波动性增大,薄夹层斜坡中、上部表现更为明显。竖直向坡面放大系数因软弱夹层厚度而异,薄夹层斜坡局部减小后增大,最大放大值出现在坡肩位置,而厚夹层斜坡最大放大值出现在软弱夹层底部。同等强度地震力激励下,坡内竖直向放大系数不及水平向,约为0.75倍。坡面上,水平和竖直向放大系数的相对大小与高程有关。软弱夹层以下,竖向放大系数大于水平向,夹层以上则相反。软弱夹层对斜坡动力响应的影响也因激励方向不同而有所区别,对水平向动力响应有一定的放大作用,而对竖直向动力响应则是吸收减弱。斜坡动力响应所选因素的影响大小顺序依次为斜坡高程、坡体位置、软弱夹层厚度、激励振幅、加载波形、激励方向,其中斜坡高程、坡体位置以及软弱夹层厚度对斜坡动力响应具有显著性影响。

关键词: 软弱夹层, 振动台试验, 加速度放大系数, 动力响应, 影响因素分析

Abstract: Based on similarity theory, two models of rock slope with different thicknesses of horizontal weak interlayers are maded. The sizes of slope models are: 1.80 m in height, 1.65 m in length, 1.50 m in breadth, and the slope angel is about 60°, the thicknesses of weak interlayers are 3 cm and 15 cm, respectively. Using the recorded data of sensors in the large-scale shaking table test and orthogonal design, the acceleration dynamic response characteristics of slope and influencing factors are investigated with different input wave kinds, excitation directions, frequencies and amplitudes. The results show that the dynamic acceleration amplification coefficients in the slope body increase with increasing elevation, and the amplification coefficients show nonlinearly surface effect. The horizontal amplification coefficients along slope surface increase with the increase of elevation in the form of fluctuation, especially at the middle and upper part of the slope with thin interlayer. The vertical amplification coefficients differ owing to the thickness of weak interlayer, it decreases in the local part of slope with thin interlayer and then increase to the maximum at the shoulder, but it appears at the bottom of interlayer for the slope with thick interlayer. Under the equal input seismic load, the vertical amplification coefficients are 0.75 times the horizontal amplification coefficients in the interior of slope body. On the surface of slopes, the magnitude of amplification coefficients in both horizontal and vertical directions are concerned with the elevation. Under the weak interlayer, the vertical amplification coefficients are greater than the horizontal’s, whereas above the weak interlayer, the result is reverse. The effect of weak interlayer on dynamic response of slopes also varies with the different excitation directions. The dynamic responses are amplified in horizontal direction, but it is weakened in the vertical direction. In order of importance, the factors influenting dynamic response of solpe is in turn: elevation, position of slope, thickness of weak interlayer, amplitude, wave types and excitation direction. Among the selected influencing factors, the elevation, position of slope and thickness of weak interlayer can significantly influence acceleration dynamic response of slopes.

Key words: weak interlayer, shaking table test, acceleration amplification coefficients, dynamic response, analysis of influencing factors

中图分类号: 

  • P 642

[1] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[2] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[3] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[4] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[5] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[6] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[7] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[8] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[9] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[10] 潘旦光, 程业, 陈清军. 地下商场结构对地面运动影响的振动台试验研究[J]. 岩土力学, 2020, 41(4): 1134-1145.
[11] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[12] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[13] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[14] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[15] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!