›› 2016, Vol. 37 ›› Issue (1): 166-174.doi: 10.16285/j.rsm.2016.01.020

• 岩土工程研究 • 上一篇    下一篇

鄂尔多斯深部咸水层CO2地质封存效果评价

谢 健1,2,张可霓1,王永胜3,覃莉清2,郭朝斌4   

  1. 1. 北京师范大学 水科学研究院,北京 100875;2. 贺州学院 建筑工程学院,广西 贺州 542899; 3. 神华鄂尔多斯煤制油分公司,内蒙古 鄂尔多斯 017209;4. 同济大学 机械工程学院,上海 201804
  • 收稿日期:2014-05-19 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:谢健,男,1978年生,博士,主要从事地下多相流数值模拟方面的研究工作。
  • 基金资助:

    国家能源应用技术研究及工程示范项目(No.NY20111102-1);国家科技支撑计划项目(No.2011BAC08B00)。

Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin, China

XIE Jian1, 2, ZHANG Ke-ni1, WANG Yong-sheng3, QIN Li-qing2, GUO Chao-bin4   

  1. 1. College of Water Science, Beijing Normal University, Beijing 100875, China; 2. College of Construction Engineering, Hezhou University, Hezhou, Guangxi 542899, China; 3. China Shenhua Coal Liquefaction Co. LTD (CSCLC) Ordos, Ordos, Inner Mongolia 017209, China; 4. School of Mechanical Engineering, Tongji University, Shanghai 201804, China
  • Received:2014-05-19 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was supported by National Energy Application Technical Research and Demonstration Project (NY20111102-1) and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2011BAC08B00).

摘要: 中国首个陆上咸水层CO2地质封存全流程示范项目于2010年正式实施。为更加清晰、准确地了解注入场地储层的注入性能和注入封存过程中可能遇到的潜在问题,基于场地储层结构和注入监测数据,采用储层多相流模拟软件TOUGH2-MP/ECO2N对鄂尔多斯105 t/a CO2注入1 620 m以深的特低渗砂岩咸水含水层进行数值模拟,对储层的压力积聚和CO2羽体扩散的动态演化以及储层封存量进行评估。结果表明,所建立的模型比较准确地反映了实际注入过程和注入效果。3 a注入引起的最大压力抬升小于15 MPa,CO2在含水层中总体呈均匀扩散,CO2注入地下3 a和53 a后,羽体在刘家沟储层中的横向迁移距离分别为550 m和700 m左右。在目前的统注方案下,CO2主要封存层位在储层上部的刘家沟组(埋深为1 690~1 699 m),其吸气量占整个储层封存量的80%以上,储层吸气能力具有由浅到深变差的特征。53 a模拟期内,进入泥岩盖层的CO2总量不及注入总量的0.05%。

关键词: 碳捕集与封存, CO2地质封存, 咸水层

Abstract: A full-chain carbon capture and storage (CCS) demonstration project was implemented in 2010 by injecting 105 tons of super-critical CO2 per annum down into the brine-saturated low-permeability sandstone and carbonate aquifers at depths of more than 1 620 m in the northeastern Ordos Basin, China. Based on the site-specific geology and the observational data, a numerical injection model is developed based on TOUGH2-MP/ECO2N to simulate the on-going injection process and hence evaluate the injection-induced behavior of the multiphase flow system in the reservoirs. The pressure build-up and the dynamics of the CO2 saturation plume are assessed. The results show that the model developed can reproduce well the performance of the storage reservoir. The CO2 plume spreads outward symmetrically in the horizontal plane. The Liujiagou sandstone aquifer is the most favorable reservoir for CO2 storage at this site. After 3 years of consecutive injection of CO2, the CO2 plume front in the Liujiagou unit is located at about 550 m in 3 years after the commencement of the injection. The pore pressure buildup due to injection is slightly less than 15 MPa. The plume in the Liujiagou unit is expected to migrate to around 700 m away from the injection well after 53 years of post-injection. The major storage reservoir is at the depth interval 1690-1699 m, which contributes over 80% of the storage capacity of the entire reservoir system. The contribution of the reservoirs to the total storage capacity descreases with the depth downward. The leakage of CO2 into the seals is negligible (<0.05%) during the 53 years of simulation period.

Key words: carbon capture and storage (CCS), CO2 geological storage, saline aquifer

中图分类号: 

  • TU 473.1

[1] 张强, 李小春, 周英博, 石露, 白冰, . 高压孔隙CO2/水作用下完整四川三叠系 砂岩剪切特性的试验研究[J]. 岩土力学, 2019, 40(8): 3028-3036.
[2] 伍海清,白 冰,李小春,刘明泽,何媛媛, . CO2地质封存中储层流体压力演化规律的解析模型[J]. , 2018, 39(6): 2099-2105.
[3] 李凯达,胡少斌,李小春,伍 键,樊清怡,伍海清,. 单相流体对砂岩强度特性的影响[J]. , 2018, 39(5): 1789-1795.
[4] 谢 健,魏 宁,吴礼舟,张可霓,许 模, . CO2地质封存泄漏研究进展[J]. , 2017, 38(S1): 181-188.
[5] 马玖辰,王昌凤,朱龙虎,刘雪玲,. 滨海咸水储层微纳米颗粒形貌特征对其运移行为的影响[J]. , 2017, 38(8): 2270-2278.
[6] 高 帅,魏 宁,李小春,雷宏武,刘明泽,. 层状非均质性对CO2在盖层中迁移泄漏规律的影响[J]. , 2017, 38(11): 3287-3294.
[7] 李小春 ,袁 维,白 冰,. CO2地质封存力学问题的数值模拟方法综述[J]. , 2016, 37(6): 1762-1772.
[8] 马玖辰 ,武春彬 ,刘雪玲 ,张志刚,. 同期采灌储能模式浅层咸水介质渗透性演化过程研究[J]. , 2015, 36(7): 1883-1891.
[9] 张 帆 ,周 辉 ,吕 涛 ,胡大伟 ,盛 谦 ,胡其志,. CO2注入下岩层变形和流体运移分析(I):两相流-岩层耦合模型[J]. , 2014, 35(9): 2549-2554.
[10] 匡冬琴 ,李 琦 ,王永胜 ,王秀杰 ,林 青 ,魏晓琛 ,宋然然,. 神华碳封存示范项目中CO2注入分布模拟[J]. , 2014, 35(9): 2623-2633.
[11] 张 帆 ,周 辉 ,吕 涛 ,胡大伟 ,盛 谦 ,肖本林,. 二氧化碳注入下岩层变形和流体运移分析:(II)实例分析[J]. , 2014, 35(10): 2888-2893.
[12] 魏 宁,李小春,王 颖,王 燕,任海洋,高 帅. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. , 2014, 35(1): 98-104.
[13] 凌璐璐 ,许雅琴 ,王永胜 ,张可霓 . 数值模拟在CO2地质封存示范项目中的应用[J]. , 2013, 34(7): 2017-2022.
[14] 刁玉杰,张森琦,郭建强,李旭峰,范基姣,贾小丰. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. , 2012, 33(8): 2422-2428.
[15] 赵锐锐 ,孟庆辉 ,成建梅. 深部咸含水层CO2注入的流体迁移模拟研究 ——以松辽盆地三肇凹陷为例[J]. , 2012, 33(4): 1247-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!