›› 2016, Vol. 37 ›› Issue (1): 237-246.doi: 10.16285/j.rsm.2016.01.028

• 数值分析 • 上一篇    下一篇

基于FDEM-Flow研究地应力对水力压裂的影响

严成增1, 2, 3,郑 宏3,孙冠华3,葛修润3   

  1. 1. 北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124;2. 北京工业大学 建筑工程学院,北京 100124; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2014-06-08 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:严成增,男,1986年生,博士,主要从事离散元有限元耦合、离散元、颗粒物质物理与力学、多物理场耦合、DDA、大规模高性能并行计算以及软件工程方面的研究工作。
  • 基金资助:

    中国博士后科学基金资助项目(No.2015M580953);国家重点基础研究发展计划(973)项目(No.2011CB013505);国家自然科学基金项目(No.11202223)。

Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow

YAN Cheng-zeng1, 2, 3, ZHENG Hong3, SUN Guan-hua3, GE Xiu-run3   

  1. 1. The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China; 2. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2014-06-08 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was supported by China Postdoctoral Science Foundation Funded Project (2015M580953), the National Program on Key Basic Research Project of China (973 Program) (2011CB013505) and the National Natural Science of China (11202223).

摘要: 用提出的FDEM-Flow(考虑流固耦合的离散元-有限元耦合方法)方法作为工具,研究了地应力对水力压裂的影响。通过一个注水圆孔的算例,研究不同地应力状态对压裂裂隙的走向和形态的影响。研究结果表明,起裂压力的大小和压裂裂隙的方位均与地应力有密切关系。在竖向地应力 保持不变的情况下,且侧压力系数 >1时,随着 的增大,起裂压力和失稳压力均减小; >1时且取值较小时,主要产生水平向的裂隙,并有斜向裂隙产生; >1时且取值较大时,裂隙严格按照最大主压应力的方向扩展,不再出现斜向裂隙; <1时,主要产生竖向的裂隙; = 1时,水平地应力和竖向地应力相等,裂隙的扩展不存在优势方向。不同侧压力系数条件下,裂隙的扩展方向与最大主应力的方向一致,水力压裂裂隙的起裂和扩展主要由最大主拉应力控制,裂隙在拉应力集中的区域起裂。这些结果与已有的试验及理论认识是相符的,进一步验证了FDEM-Flow方法用于模拟水力压裂问题的有效性。

关键词: 有限元-离散元法, FDEM-Flow, 水力压裂, 地应力

Abstract: With the proposed FDEM-Flow (combined finite-discrete element method considering fluid-solid coupling) method as a tool, we study the effects of in-situ stress on hydraulic fracturing. Through a numerical examples of an injection hole under the state of different in-situ stresses, the influence of in-situ stress on the direction and morphology of fracturing crack is studied. The results show that both the initiation pressure and direction of fracturing fractures are closely related to in-situ stress. When the vertical in-situ stress keeps constant and the lateral pressure coefficient ?>1, the initiation pressure and breakdown pressure are decreased. When ?>1 and its value is comparatively small, horizontal cracks are mainly produced with some oblique cracks generating. However, when ?>1 and the value is larger, cracks are strictly extended along the direction of the maximum principal stress and oblique cracks no longer occur. When ?<1, fracture pattern is dominated by vertical cracks. But when ?=1, the horizontal in-situ stress and vertical in-situ stress are equal, there is no advantage direction for crack extension. Under the conditions of different lateral pressure coefficients, the direction of crack propagation always coincides with that of the maximum principal stress. The fracture initiation and propagation are mainly controlled by the maximum principal tensile stress, and fractures are initiated in the concentration zones of tensile stress. These results agree well with the available experimental results and theoretical analysis, which demonstrate the effectiveness of FDEM-Flow method to simulate hydraulic fracturing.

Key words: finite-discrete element method (FDEM), FDEM-Flow, hydraulic fracturing, in-situ stress

中图分类号: 

  • O 319.56

[1] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[2] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[3] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[4] 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171.
[5] 王川婴, 王益腾, 韩增强, 汪进超, 邹先坚, 胡胜, . 基于钻孔形态分析的地应力测量方法研究[J]. 岩土力学, 2019, 40(S1): 549-556.
[6] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[7] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[8] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[9] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[10] 徐辰宇, 白 冰, 刘明泽, . 注CO2条件下花岗岩破裂特征的试验研究[J]. 岩土力学, 2019, 40(4): 1474-1482.
[11] 邓 珂, 陈 明, 卢文波, 严 鹏, 冷振东, . 地应力对坝肩槽预裂爆破成缝的影响研究[J]. 岩土力学, 2019, 40(3): 1121-1128.
[12] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[13] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[14] 梁天成,刘云志,付海峰,严玉忠,修乃岭,王 臻. 多级循环泵注水力压裂模拟实验研究[J]. , 2018, 39(S1): 355-361.
[15] 颜天佑,崔 臻,张勇慧,张传健,盛 谦,李建贺,. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. , 2018, 39(S1): 378-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!