›› 2016, Vol. 37 ›› Issue (1): 297-304.doi: 10.16285/j.rsm.2016.01.035

• 测试技术 • 上一篇    

深地下工程模型试验加卸载装置的研制

李 浪,王明洋,范鹏贤,程怡豪,李治中,蒋海明   

  1. 解放军理工大学 爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007
  • 收稿日期:2014-05-27 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:李浪,男,1987年生,博士研究生,主要从事深部岩体力学模型试验方面学习和研究工作。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2013CB036005)。

Development of loading and unloading apparatus for model test in deep underground engineering

LI Lang, WANG Ming-yang, FAN Peng-xian, CHENG Yi-hao, LI Zhi-zhong, JIANG Hai-ming   

  1. State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, Jiangsu 210007, China
  • Received:2014-05-27 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2013CB036005).

摘要: 考虑地质力学模型试验的边界条件:一是等位移边界条件,二是等应力边界条件。由于深部岩体介质具有储能特性,在进行深地下地质力学模型试验时,模型边界应设置于弹性区,除满足试验模型表面均匀应力场条件外,需更多考虑加载边界处试验装置的整体刚度,其能及时补给模型因开挖卸荷导致围岩回弹所需的能量,并提供一回弹刚度,边界上应力可随此刚度进行调节。探讨并分析了试验装置刚度对围岩破坏模式的影响,分别以弹性模型和弹塑性模型计算了卸荷时围岩的回弹刚度。将碟簧引入加载框架,并对碟簧系统进行设计,通过试验对碟簧系统刚度进行验证。研究表明,该新型加卸载试验系统能更精确地模拟深部岩体原始属性,可适用于深地下工程地质力学模型试验。

关键词: 地质力学模型试验, 碟型弹簧, 边界条件, 刚度, 深部岩体, 试验装置

Abstract: Two boundary conditions are mainly considered in the geomechanical model tests, i.e., constant displacement boundary condition and constant stress boundary condition. Due to the characteristics of energy storage in deep rock mass media, the model boundary should be set at elastic regions to satisfy the uniformity stress on every point of boundary surface when conducting geomechanics model test. In addition, more attention should be paid to the overall stiffness of the testing apparatus at loading boundary, which can promptly supply the model a spring-back energy induced by excavation. Thus stress on the boundary can be adjusted automatically with the stiffness. The influence of apparatus stiffness on failure modes of surrounding rock is also discussed. The rebound stiffness of surrounding rock is calculated in the process of unloading by the elastic model and elastoplastic model respectively. The disc spring system is introduced to the loading apparatus and further designed based on the above calculated stiffness,,which is verified through the experiment as well. It has been believed that the new type loading and unloading test system can accurately simulate the real stress state of deep rock mass, and thus can be widely applied to geomechanical model tests.

Key words: geomechanical model test, disc spring, boundary conditions, stiffness, deep rock mass, test apparatus

中图分类号: 

  • O 242

[1] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[2] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[3] 黄福云, 陈汉伦, 董锐, 单玉麟. 水平低周往复位移下单桩-土相互作用试验研究[J]. 岩土力学, 2020, 41(5): 1625-1634.
[4] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[5] 夏才初, 喻强锋, 钱 鑫, 桂 洋, 庄小清. 常法向刚度条件下岩石节理剪切−渗 流特性试验研究[J]. 岩土力学, 2020, 41(1): 57-66.
[6] 芮圣洁, 国振, 王立忠, 周文杰, 李雨杰, . 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41(1): 78-86.
[7] 谢芸菲, 迟世春, 周雄雄, . 复杂环境中大规模桩筏基础的优化设计方法研究[J]. 岩土力学, 2019, 40(S1): 486-493.
[8] 张海廷, 杨林青, 郭芳, . 基于SBFEM的层状地基埋置管道动力 响应求解与分析[J]. 岩土力学, 2019, 40(7): 2713-2722.
[9] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[10] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[11] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[12] 蒋中明, 刘澧源, 赵海斌, 唐 栋, 胡 炜, 梅松华, 李 鹏, . 地下储气库热力耦合数值分析动态边界条件研究[J]. 岩土力学, 2019, 40(3): 1149-1157.
[13] 崔春义, 孟 坤, 武亚军, 马科研, 梁志孟, . 轴对称径向非均质土中单桩纵向振动特性研究[J]. 岩土力学, 2019, 40(2): 570-579.
[14] 王璞, 王成虎, 杨汝华, 侯正阳, 王洪, . 基于应力多边形与震源机制解的 深部岩体应力状态预测方法初探[J]. 岩土力学, 2019, 40(11): 4486-4496.
[15] 徐 平, 翟攀攀, 张天航, 董新平. 盾构隧道衬砌管片接头弯曲刚度类指数模型研究[J]. 岩土力学, 2018, 39(S2): 83-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!