›› 2016, Vol. 37 ›› Issue (4): 935-942.doi: 10.16285/j.rsm.2016.04.004

• 基础理论与实验研究 • 上一篇    下一篇

一种基于强度折减法的次级滑动面分析方法研究

闫 超1, 2, 3,刘松玉1, 2,籍晓蕾4   

  1. 1. 东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096;2. 东南大学 岩土工程研究所,江苏 南京 210096; 3. 安徽大学 资源与环境工程学院 矿山环境修复与湿地生态安全协同创新中心,安徽 合肥 230601; 4. 中国兵器工业北方勘察设计研究院有限公司,河北 石家庄 050043
  • 收稿日期:2014-12-09 出版日期:2016-04-11 发布日期:2018-06-09
  • 通讯作者: 刘松玉,男,1963年生,教授,博士生导师,主要从事土力学理论、桩基工程、特殊地基和路基稳定、地下空间技术、原位测试技术等方面的研究工作。E-mail: liusy@seu.edu.cn E-mail:yanchao@seu.edu.cn
  • 作者简介:闫超,男,1985年生,博士研究生,主要从事地基处理方面的研究工作
  • 基金资助:

    国家自然科学基金项目(No. 41330641);国家科技支撑项目(No. 2012BAJ01B02-01)。

Research on a secondary sliding surface analysis approach based on strength reduction method

YAN Chao1, 2, 3,LIU Song-yu1, 2,JI Xiao-lei4   

  1. 1. Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China; 2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 3. Collaborative Innovation Center for Mines Environmental Remediation and Wetland Ecological Security, School of Resource and Environment Engineering, Anhui University, Hefei, Anhui 230601, China; 4. China North Industries Norengeon Ltd., Shijiazhuang, Hebei 050043, China
  • Received:2014-12-09 Online:2016-04-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41330641) and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAJ01B02-01).

摘要: 传统强度折减法通常对整个边坡区域进行折减,因而只能得到最小安全系数及对应的最危险临界滑动面。但在工程实践中,边坡的治理范围不能局限于最危险滑动面所包围的区域,不满足规范要求的次级滑动面范围内的坡体亦应得到治理。为了克服传统强度折减法在搜索次级滑动面方面的缺陷,提出了一种新的强度折减法。一般而言,边坡的屈服区域主要集中在滑动面两侧附近,形成一个沿滑动面分布的剪切破坏带,因此,在用强度折减法进行边坡稳定性分析时,只需对剪切破坏带范围内的局部坡体进行折减,则可得到该滑动面的安全系数和滑动面。基于以上认识,假设剪切破坏带沿对数螺旋曲线分布,不断调整对数螺旋曲线的形状以得到不同范围的剪切破坏带,对各种不同的剪切破坏带范围内的坡体进行局部折减计算,即可得到不同的安全系数及对应的滑动面。通过两个边坡算例(单台阶、双台阶)验证了该方法的可行性,并最后讨论了剪切破坏带的宽度对结果的影响。两个算例的计算结果表明,该方法不仅可以得到最危险临界滑动面,亦可得到任意安全系数对应的滑动面。

关键词: 强度折减法, 次级滑动面, 安全系数, 边坡稳定性分析

Abstract: In the traditional strength reduction method, only the minimum safety factor and the critical slide surface can be acquired as its reduction region covers the whole slope model. However, in the slope engineering practice, we should treat the slope area not only surrounded by the global critical slide surface, but also located in the vicinity of the secondary slide surfaces. Thus, a modified strength reduction method is proposed to overcome the shortcomings of the traditional strength reduction method in searching the secondary slide surfaces. In general, the yield regions of slope are always distributed on both sides of a slide surface, which presents as a shear zone. Thus, a slide surface and its safety factor can be obtained by reducing the strength parameters of local slope area located within the shear zone. Based on the above understanding, it is supposed that the shear zones are distributed along the logarithmic spiral. Shear zones at different locations and ranges can be gained by changing the form of the logarithmic spirals, and then different secondary slide surfaces with their safety factors can be achieved through the strength reduction method. At last, the proposed method is verified through two case studies, and the effect of the shear zone breadth on calculated results is discussed. The results show that the proposed method can get not only the critical slip surface, but also different secondary slide surfaces corresponding to any safety factor.

Key words: strength reduction method, secondary sliding surface, factor of safety, slope stability analysis

中图分类号: 

  • TU 457

[1] 周强, 黎康平, 段亚辉, 曹子君, 李典庆, . 基于广义可靠指标相对安全率的地基承载力 安全判据研究[J]. 岩土力学, 2020, 41(6): 2052-2062.
[2] 肖明清, 徐晨, . 基于临界稳定断面的隧道围岩稳定性分析方法探讨[J]. 岩土力学, 2020, 41(5): 1690-1698.
[3] 李剑, 陈善雄, 余飞, 姜领发, 戴张俊. 预应力锚索加固高陡边坡机制探讨[J]. 岩土力学, 2020, 41(2): 707-713.
[4] 张海娜, 陈从新, 郑 允, 孙朝燚, 张亚鹏, 刘秀敏, . 坡顶荷载作用下岩质边坡弯曲倾倒破坏分析[J]. 岩土力学, 2019, 40(8): 2938-2946.
[5] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[6] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[7] 任晋岚, 陈曦, 王冬勇, 吕彦楠. 基于广义Hoek-Brown准则的瞬时线性化 强度折减技术[J]. 岩土力学, 2019, 40(12): 4865-4872.
[8] 李典庆, 周强, 曹子君, . 基于广义可靠指标相对安全率的岩土工程 设计安全判据[J]. 岩土力学, 2019, 40(10): 3977-3986.
[9] 尹小涛,薛海斌,汤 华,任兴文,宋 罡,. 边坡局部和整体稳定性评价方法的辩证统一[J]. , 2018, 39(S1): 98-104.
[10] 尹小涛,严 飞,秦雨樵,周 磊,王东英, . 地震作用下华丽高速公路金沙江桥华坪岸顺层边坡动力稳定性评价[J]. , 2018, 39(S1): 387-394.
[11] 秦雨樵,汤 华,冯振洋,尹小涛,王东英, . 基于聚类分析的边坡稳定性研究[J]. , 2018, 39(8): 2977-2983.
[12] 肖国峰,陈从新. 岩质块体渐进破坏的稳定分析方法[J]. , 2018, 39(8): 3001-3010.
[13] 许 明,唐亚锋,刘先珊,罗 斌,唐道勇,. 自适应锚索锚固岩质边坡地震动力响应分析[J]. , 2018, 39(7): 2379-2386.
[14] 李清川,李术才,王汉鹏,张红军,张 冰,张玉强,. 上覆流沙层隧道开挖面稳定性分析与数值试验研究[J]. , 2018, 39(7): 2681-2690.
[15] 严敏嘉,夏元友,刘婷婷. 地震作用下预应力锚索加固顺层岩坡极限分析[J]. , 2018, 39(7): 2691-2698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!