›› 2016, Vol. 37 ›› Issue (4): 1042-1048.doi: 10.16285/j.rsm.2016.04.017
孙光中1, 2, 3,王公忠2, 3,张瑞林2, 3
SUN Guang-zhong1, 2, 3,WANG Gong-zhong2, 3,ZHANG Rui-lin2, 3
摘要: 针对含瓦斯构造煤渗透率与温度变化关系,利用自主研发的含瓦斯煤岩热-流-固耦合三轴渗流试验装置,开展不同应力条件下含瓦斯构造煤原煤样的渗透率与温度变化的试验研究。试验结果表明:(1)在试验温度变化过程中,构造煤样渗透率随温度升高而降低,渗透率与温度变化呈现负指数函数分布规律;(2)在试验温度变化过程中,构造煤渗透率损失率与有效应力符合Boltzmann分布,渗透率损失率存在有效应力门槛值大约为4.515 MPa。渗透率变化主要分为渗透率加速变化与平稳变化两个阶段,构造煤样渗透率从加速阶段过渡到平稳变化温度大约为45 ℃;(3)在温度21~80 ℃范围内,渗透率敏感性系数数量级为10-2,温度变化对构造煤样渗透率影响不显著。同时,有效应力的增加使得温度敏感性系数降低。
中图分类号:
TU 443
[1] | 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094. |
[2] | 方瑾瑾, 冯以鑫, 王立平, 余永强, . 真三轴条件下非饱和黄土的有效应力屈服特性[J]. 岩土力学, 2020, 41(2): 492-500. |
[3] | 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654. |
[4] | 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77. |
[5] | 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308. |
[6] | 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617. |
[7] | 毛小龙, 刘月田, 关文龙, 任兴南, 冯月丽, 丁祖鹏, . 一种适用于孔隙体积应变的有效应力方程[J]. 岩土力学, 2019, 40(8): 3004-3010. |
[8] | 王辰霖, 张小东, 杜志刚, . 循环加卸载作用下预制裂隙煤样渗透性试验研究[J]. 岩土力学, 2019, 40(6): 2140-2153. |
[9] | 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730. |
[10] | 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448. |
[11] | 李 军, 张 杨, 胡大伟, 周 辉, 卢景景, 吕 涛, 史林肯, . 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700. |
[12] | 东振, 申瑞臣, 薛华庆, 陈艳鹏, 陈姗姗, 孙粉锦, 张福东, 刘人和, 彭涌, . 考虑滑脱效应的低阶煤动态渗透率预测新模型[J]. 岩土力学, 2019, 40(11): 4270-4278. |
[13] | 荣腾龙, 周宏伟, 王路军, 任伟光, 王子辉, 苏腾, . 采掘扰动与温度耦合影响下工作面 前方煤体渗透率模型研究[J]. 岩土力学, 2019, 40(11): 4289-4298. |
[14] | 陈育民, 陈润泽, 霍正格, . 饱和悬浮塑料砂流动变形可视环剪试验研究[J]. 岩土力学, 2019, 40(10): 3709-3716. |
[15] | 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50. |
|