›› 2016, Vol. 37 ›› Issue (5): 1333-1342.doi: 10.16285/j.rsm.2016.05.015

• 基础理论与实验研究 • 上一篇    下一篇

青藏粉质黏土单向冻结冷生构造发育及冻胀发展过程试验研究

王永涛1, 2,王大雁1,马 巍1,穆彦虎1,关 辉1,顾同欣1   

  1. 1.中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室,甘肃 兰州 730000;2.中国科学院大学,北京 100049
  • 收稿日期:2014-08-31 出版日期:2016-05-10 发布日期:2018-06-09
  • 通讯作者: 王大雁,女,1971年生,博士,研究员,主要从事冻土物理力学方面的研究工作。E-mail:dywang@lzb.ac.cn E-mail:wangyongtao@lzb.ac.cn
  • 作者简介:王永涛,男,1989年生,博士,主要从事冻土物理力学方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 41071048);冻土工程国家重点实验室基金(No. SKLFSE-ZT-17);国家自然科学基金创新群体(No. 41121061)。

Experimental study of development of cryostructure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing

WANG Yong-tao1, 2, WANG Da-yan1, MA Wei1, MU Yan-hu1, GUAN Hui1, GU Tong-xin1   

  1. 1. State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-08-31 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This study was funded by the National Natural Science Foundation of China(41071048), the Foundation of State Key Laboratory of Frozen Soil Engineering(No. SKLFSE-ZT-17) and the Innovative Research Group of National Natural Science Foundation of China(41121061).

摘要: 通过对青藏饱和粉质黏土进行开放条件下的单向冻结试验,并结合土样冻结过程的图像数据,分析土样在单向冻结过程中冷生构造的发育和冻胀变形的发展规律,得到以下结论:试样冻结稳定所需时间为26 h左右,基本不受顶板温度变化的影响,但土样冻结后形成不同冷生构造带的位置及薄厚与土样顶板温度(顶底板温度梯度)密切相关,顶板温度越低,微薄层状和薄层状构造带的厚度越大,最暖端厚层冰透镜体以及未冻土部分整体状构造带的厚度越小。研究结果还表明,土样的冻胀变形经历了快速冻胀、稳定冻胀和线性冻胀3个阶段,其中线性冻胀阶段是冻胀发展最快的阶段,也是冰透镜体生长最快的阶段。研究成果揭示了土样单向冻结过程中冷生构造发育和冻胀发展的动态过程,为冻胀机制的认识以及冻胀模型的建立与验证提供了试验基础。

关键词: 单向冻结, 数字图像采集技术, 冷生构造, 冻胀变形, 水分迁移

Abstract: Based on one-dimensional freezing test at five different top cooling temperatures in an open system, the freezing behaviors of the saturated Qinghai-Tibet silty clay are studied experimentally. Combining with digital image acquisition technology and routine data measure system in laboratory, the temperature distribution and development, cryostructure profile development, frost heave development, water supplement process and water content profile are analyzed during one-dimensional freezing of soil sample. Some conclusions are drawn as follows. Firstly, the freezing front in sample reaches a stable state after 26 hours. After that, the longitudinal cryostructure of soil samples can be divided into four belts, including tiny thin layer structural belt, thin layer structural belt, thick layer structural belt and overall structure belt from the cold end to warm end. The frost heave development contains three stages, i. e. fast frost heave stage, stable frost heave stage and linear frost heave stage. The ice lens segregation at the bottom of thin layer structural belt and thick layer structural belt are the main source of frost heave. After tests, the water content profiles of the soil sample indicate that the water content increases in frozen part and decreases in unfrozen part. Meanwhile, the layers in which having the highest water content are located at the location of thick ice lenses. Because of the consolidation of the unfrozen part and water migration from unfrozen part to freezing front and frozen part, the water content of the unfrozen part has decreased and induced a drying phenomenon. The conclusions have provided the dynamic processes of the development of cryostructure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing. It is expected that this study will provide a test basis for future study of more reasonable frost heave models.

Key words: one-dimensional freezing test, digital image acquisition technology, cryostructure, frost heave, water migration

中图分类号: 

  • TU 411

[1] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[2] 王震, 朱珍德, 陈会官, 朱姝, . 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 40(7): 2608-2616.
[3] 宋宏芳, 岳祖润, 李佰林, 张松, . 季节冻土区高速铁路防冻胀路基保温强化特性研究[J]. 岩土力学, 2019, 40(10): 4041-4048.
[4] 黎瀚文,张璐璐,冯世进,郑文棠,. 复杂大气环境作用下高铁路基水分迁移响应[J]. , 2018, 39(7): 2574-2582.
[5] 张沛然,黄雪峰,杨校辉,刘自龙,朱中华,. 盐渍土水-热场耦合效应与盐胀变形试验[J]. , 2018, 39(5): 1619-1624.
[6] 魏厚振, 周家作,韦昌富,陈 盼. 饱和粉土冻结过程中的水分迁移试验研究[J]. , 2016, 37(9): 2547-2552.
[7] 刘泉声 ,黄诗冰 ,康永水 ,刘建平,. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. , 2016, 37(6): 1530-1541.
[8] 李彦龙,王 俊,王铁行,. 温度梯度作用下非饱和土水分迁移研究[J]. , 2016, 37(10): 2839-2844.
[9] 张莲海 ,马 巍 ,杨成松,. 冻融循环过程中土体的孔隙水压力测试研究[J]. , 2015, 36(7): 1856-1864.
[10] 阴琪翔 ,周国庆 ,赵晓东 ,路贵林,. 双向冻结-单向融化土压缩性及水分迁移试验研究[J]. , 2015, 36(4): 1021-1026.
[11] 曾桂军 ,张明义 ,李振萍 ,裴万胜,. 饱和正冻土水分迁移及冻胀模型研究[J]. , 2015, 36(4): 1085-1092.
[12] 商厚胜 ,岳丰田 ,石荣剑,. 浅覆土下矩形冻结加固的模型试验研究[J]. , 2014, 35(S2): 149-155.
[13] 袁俊平 ,李康波 ,何建新 ,刘 亮 ,詹 斌 , . 基于孔隙分布模型的垫层料冻胀变形规律探讨[J]. , 2014, 35(8): 2179-2183.
[14] 刘 杰,姚海林,胡梦玲,卢 正,余东明,陈风光. 水位波动下路基湿度动态响应及地下防排水模型试验研究[J]. , 2012, 33(10): 2917-2922.
[15] 冯瑞玲 ,王鹏程 ,吴立坚. 硫酸盐渍土路基盐冻胀变形量计算方法探讨[J]. , 2012, 33(1): 238-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!